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Abstract 

Predictive models for marine ecosystems are used for a variety of needs. Due to sparse measurements 
and limited understanding of the myriad of ocean processes, there is however uncertainty. There is model 
uncertainty in the parameter values, functional forms with diverse parameterizations, level of complexity 
needed, and thus in the state fields. We develop a principled Bayesian model learning methodology that 
allows interpolation in the space of candidate models and discovery of new models, all while estimating 
state fields and parameter values, as well as the joint probability distributions of all learned quantities. We 
address the challenges of high-dimensional and multidisciplinary dynamics governed by partial differential 
equations (PDEs) by using state augmentation and the computationally efficient Gaussian Mixture Model 
- Dynamically Orthogonal filter. Our innovations include special stochastic parameters to unify candidate
models into a single general model and stochastic piecewise function approximations to generate dense
candidate model spaces. They allow handling many candidate models, possibly none of which are accurate,
and learning elusive unknown functional forms in compatible and embedded models. Our new methodology is
generalizable and interpretable and extrapolates out of the space of models to discover new ones. We perform
a series of twin experiments based on flows past a seamount coupled with three-to-five component ecosystem
models, including flows with chaotic advection. We quantify learning skills, and evaluate convergence and
sensitivity to hyper-parameters. Our PDE framework successfully discriminates among model candidates,
learns in the absence of prior knowledge by searching in dense function spaces, and updates joint probabilities
while capturing non-Gaussian statistics. The parameter values and model formulations that best explain
the data are identified.

Keywords: Dynamical systems, Data assimilation, Uncertainty quantification, Gaussian Mixture Models, 
Dynamically Orthogonal, Model learning, Bayesian, Stochastic PDEs, Ocean and weather prediction 

1. Introduction

The ability to predict and understand marine ecosystems is essential for addressing many of the grand
challenges faced by humanity, such as climate change, food security, and sustainability. In broad terms, 
marine ecosystems can be seen as food webs, or flow of food/energy from nutrients to phytoplanktons, to 
zooplanktons, to fish, and finally recycling back to the nutrients [1; 2]. However, there does not yet exist a 
single generic model that accurately represents all the components in marine food webs due to the presence 
of highly complex biological processes with many unknown interactions. Therefore, many approximations 
are made and only parts of a food web are commonly modeled. The interactions of what is modeled with 
other portions of the food web then need to be parameterized. In addition, biology is forced by complex 
nonlinear physics. Most biogeochemical-physical modeling systems thus broadly categorize the nutrients 
and individual species, representing them as continuous state variable fields, defined as concentrations of 
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nutrients, biomass, or number of organisms per unit volume of water. The dynamics of these fields consists 
of reaction terms representing biogeochemical processes such as nutrient uptake, grazing, death, etc., and of 
forcing by physical processes such as advection, diffusion, and sun light. 
A plethora of biogeochemical models have been proposed. They differ in their complexity, or ability to re-

solve different biological processes. Models of higher complexity have more biological components, functional 
terms, and parameters. However, process terms and parameters are often poorly known, which hampers 
the utility of highly complex models [3; 4; 5]. The simplest and most popular models are 3-component 
nutrient-phytoplankton-zooplankton (NPZ) models [6; 7]. NPZ models are easily understood and serve an 
important role in ocean research. Including the intermediate state of detritus leads to four component NPZ-
Detritus biological models [8]. Intermediate complexity models involve around 7 to 10 components, adding 
bacteria, nitrate, ammonium, and dissolved organic nitrogen [9], or related state variables [10]. One of the 
most complex lower-trophic-level marine ecosystem models is the European Regional Seas Ecosystem Model 
(ERSEM, [11; 12; 13]), originally developed for the North Sea. Many choices of functional forms exist for 
each of the biological processes [3], leading to application-specific variants of the above models. 
Biogeochemical models are commonly developed semi-empirically, leading to uncertainty in their pa-

rameters, functional forms, and level of complexity. What is adequate for a particular ocean region may 
not work elsewhere or may need to be updated due to seasonal or other variabilities [14]. Such model 
uncertainties transfer to the state variables predicted, complicating model learning by direct comparisons 
of state variables with in situ data. As a result, when observations are employed to develop models, it is 
often in an offline mode, fitting parameter values or functional forms to data in controlled experiments. 
With data assimilation, we could however use observations in a direct Bayesian sense, to jointly learn state 
variables, parameter values, and discriminate/discover functional forms with quantifiable uncertainty [15]. 
Most biogeochemical data assimilation [16; 17] can be categorized broadly into two categories. The first is 
parameter estimation, where model parameters are calibrated by minimizing misfits between model output 
fields and independent observations [18; 19; 4; 20]. The second is sequential estimation, where observations 
collected are used to update model states during the forward model integration [10; 21; 22; 23]. However, 
very few studies deal with the simultaneous estimation of parameters, state variables, and model equations. 
Doron et al. [24] used a Monte Carlo ensemble of 200 simulations lasting 30-days in the North Atlantic and 
conducted idealized twin experiments with surface observations of phytoplankton to estimate parameters 
and states with a Kalman filter-based scheme and state augmentation. Similarly, Jones et al. [25] performed 
state and parameter estimation in a nonlinear phytoplankton-zooplankton model using two Markov Chain 
Monte Carlo (MCMC) algorithms in an identical-twin setting. Lately, along with state and parameter es-
timation, the selection of optimal complexity of biogeochemical models has become a new area of research 
[15; 4; 26; 27]. Because of the multiscale and intermittent variability of marine ecosystems, there is also a 
need for generalized and adaptive modeling, where models can adapt during run-time [14; 28; 29; 30]. 
Several machine learning methods have been developed for the discovery of model equations. The sparse 

regression-based methods (SINDy; [31; 32]) are promising as they do not require prior knowledge, however, 
they often require large data sets. Variations of SINDy include weak SINDy to learn PDEs [33], adaptive 
generation of features to increase the library of models [34], and extensions to Bayesian identification [35]. 
Deep learning methods have been derived to obtain marine ecosystem closure models [36]. Genetic algorithms 
[37] and reinforcement learning [38; 39; 40] have been used to search the space of candidate models. However,
most of these approaches do not provide uncertainty estimates for the discovered models. Methods have also
combined prior knowledge about underlying governing equations for model recovery and refinement. For
example, Raissi and Karniadakis [41] used Gaussian processes to learn the values of the parametric response
of partially-known nonlinear differential equations. Unfortunately, data and knowledge of governing laws
are luxuries in the case of realistic biogeochemical models.
It is clear that a direct principled way of identifying models that best explain the data is much needed. 

The Bayesian theory and schemes of Lu and Lermusiaux [42; 43] address several of the above needs and draw-
backs, using sparse observations for joint Bayesian inference of states and parameters along with probabilistic 
discrimination among candidate models. However, several questions remain: Could we avoid assimilating 
observations independently in each candidate model when there are so many models to choose from? And if 
none of these models are that accurate, could the Bayesian machine find the elusive true formulations? Could 
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it interpolate within and extrapolate out of known model spaces, while providing accurate joint probability 
distributions for model states, parameters, and formulations? Could such Bayesian learning be efficient 
and accurate with high-dimensional and multidisciplinary physical-biogeochemical stochastic PDEs? The 
overall goal of the present paper is thus to extend and generalize the discrimination-based model learning 
developed in [42; 43] to allow for interpolation in the space of candidate models and discovery of new models, 
in an efficient fashion. Our novel learning and discovery of differential models is achieved by introducing 
special stochastic parameters and stochastic piecewise function approximations. We address the challenges 
of multidisciplinary dynamics and develop a rigorous PDE Bayesian learning framework using state aug-
mentation and the Gaussian Mixture Model - Dynamically Orthogonal (GMM-DO) filter [44; 45]. The 
final estimates are notably joint probability distributions for all learned quantities. In Sect. 2, we present 
the problem statement. In Sect. 3, we develop the general Bayesian learning methodology with special 
parameters for model learning and discovery. In Sect. 4, we describe the stochastic biogeochemical-physical 
equations and simulated experiments. In Sect. 5, we apply our methodology to four sets of experiments of 
varying complexities and learning objectives. Conclusions are provided in Sect. 6. 

2. Problem Statement 

A single mathematical model that exactly captures all the physical and biological processes occurring in 
the real world does not yet exist. Hence, there is inherent model uncertainty that manifests in many forms, 
including: initial and boundary condition uncertainties; unreliable parameter values; multiple competing 
candidate model functions; unknown functional forms; missing model terms; and, debatable complexity of 
the model. In this work, we consider discriminating among candidate models, learning among compatible 
models, and discovering new model formulations. Compatible models are models that can be related to 
a single dynamical system theoretically and that can also be combined numerically. Compatible models 
can nonetheless represent different dynamics, e.g., our goals include learning which dynamics are or are not 
present based on observations. 
In general, we consider a stochastic dynamical modeling system defined on a domain �, governing the 

dynamics of �(�, �; �) : R� × [0, � ] → R�� , the stochastic state vector comprising �� dynamical state 
variable fields. The realization index � belongs to a measurable sample space Ω and the model depends on 
a vector �(�) of �� uncertain parameters. To encompass the majority of scenarios, we write the general 
form of the uncertain dynamical modeling system as follows, 

��(�, �; �) 
= ℒ[�(�, �; �), �(�), �, �] + ℒ̂[�(�, �; �); �] + ℒ̃[�(�, �; �); �] ,

�� 
� ∈ �, � ∈ [0, � ], � ∈ Ω , (1) 

with �(�, 0; �) = ��(�; �) , 

and ℬ[�(�, �; �)] = �(�, �; �), � ∈ ��, � ∈ [0, � ], � ∈ Ω , 

where ��(�; �), ℬ, and �(�, �; �) are the stochastic initial conditions, boundary condition operators, and 
boundary values respectively. The functional form of the first dynamics term ℒ[�(�, �; �), �(�), �, �] is as-
sumed to be known, but with uncertain parameters. The second term ℒ̂[�(�, �; �); �] ∈ {ℒ̂1[�(�, �; �); �], ..., 
ℒ̂ 
�� [�(�, �; �); �]}, represents a set of compatible candidate functional forms, where �� is the number of
candidates. For example, for reaction terms, model functions are often from the polynomial, exponential, 
and/or sinusoidal families, and can be rational or irrational functions. The third term ℒ̃ [�(�, �; �); �] has a 
functional form completely unknown. The stochastic initial and boundary condition formulations can also 
have uncertain function forms, similar to the dynamical modeling system itself, e.g. they can be known, 
belonging to a family, or unknown. 
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⎪⎪ ⎪��� 
1 (�,�;�) = ℒ� � � 

 1[�
�⎨ �� 1 (�, �; �), ..., ��       

� (�)
(�, �;�),� (�),�, �;�]

.ℳ� : . . , � = 1, ..., �⎪ � (2) ⎪⎪⎩ ��� 
� (�,�;�)

� (�) = ℒ� [�� 
�  1(�, �;  (�) �), ..., �� (�, �; �), ��

 (�),  � (�) �, �; �]�� � � 

⎧ In some cases, candidate models have different complexities, 

where each model, ℳ�, has �� (�) number of state variables ({�� 
1, ..., �

� }) � (�) from a pool of candidates, and
� 

their aggregates. In such situations, the candidate models can often remain compatible with each other, 
for example low complexity models are embedded in higher complexity ones. We refer to such classes of 
candidate models as, compatible-embedded models. Of course, in general, uncertainty in parameter values, 
functional forms, and complexities occur simultaneously. 
Let � (�; �) ∈ R���� denote the spatially discretized state vector of the continuous field �(�, �; �). where 

�� denotes the dimension of the discretized state space. Next, we assume that the observations (�(�; �)) 
are indirect, noisy, and related to � (�; �) according to the linear model from the state to the data space, 

�(�; �) = ��(�; �) + � (�; �), � (�; �) ∼ � (0, �) (3) 

where � is the number of available observations; � ∈ R�� ×�� �� 
� the observation matrix; and � ∈ R�� a 

zero-mean, uncorrelated Gaussian measurement noise with covariance matrix � ∈ R�� ×�� . Observations 
are assumed to be available only at discrete time-instants, �� for � = 1, 2, ..., �. 
In summary, our specific objectives are thus two-folds, first to solve the stochastic forward-modeling 

system (Eqs. 1 & 2), taking into account all the associated uncertainties including compatible, compatible-
embedded, and unknown model terms; and second to simultaneously learn, in the Bayesian sense, the state 
fields, parameters, and model equations based on the observation model (Eq. 3). Our Bayesian learning thus 
need to evolve the prior and posterior joint probabilities of state fields, parameters, and model formulations, 
given the observations available and all uncertainties. The overall goal is to accurately represent these 
probability density functions (pdfs), including the marginal probabilities of known, uncertain, and unknown 
model formulations. It is only if the observations are sufficiently informative about either the state fields, 
parameters, and/or model formulations, that the Bayesian machine will identify the true state variables, 
true parameters, and/or true model. If the observations are not sufficiently informative, the perfect Bayesian 
machine will not lead to a unique identification, but provide the exact posterior probabilities of the models, 
parameter values and/or state variable fields. 

3. General Bayesian Learning Methodology 

In this work, we start from Bayesian learning for rigorous discrimination among candidate models [42; 43]. 
Each candidate model then evolves the joint pdf of its state variables and parameters, independently from 
other models, and provides probability distributions that are conditional on the candidate model. When 
observations are made, both the model-conditional state variables and parameters, and the model pdfs are 
updated using Bayes’ rules [46], 

��|� ,ℳ(�|� , ℳ�)
�� |�,ℳ(� |�, ℳ�) = �� |ℳ(� |ℳ�) , ∀ � ∈ R�� �� , ∀ � ∈ {1, ..., ��} ,

��|ℳ(�|ℳ�) 
(4) 

��|ℳ(�|ℳ�) 
�ℳ|� (ℳ�|�) = �ℳ(ℳ�) , ∀ � ∈ {1, ..., ��} ,

�� (�) 

where ℳ� is the ��ℎ model candidate and the distributions �� |ℳ(� |ℳ�) and �� |�,ℳ(� |�, ℳ�) are the prior 
and posterior model-conditional state variable distributions, respectively. The model distribution �ℳ(∙) is 
the prior probability for each of the candidates being the true model and �ℳ|� (∙|�) is the corresponding 
posterior model distribution. This pdf �ℳ|� (∙|�) allows learning by exact Bayesian discrimination among 
candidate models. In particular, when observations are not sufficient to achieve unequivocally the ultimate 
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learning objective, this posterior pdfs will correctly represent the ambiguity including possible multimodal 
distributions and the effects of biases in the candidate models [42; 43]. 
The above Bayesian learning evolves each stochastic candidate model separately. To increase efficiency, 

this can be circumvented, for example, when models are compatible or compatible-embedded. Next, we 
thus develop new stochastic parameterizations that unify all such candidate models into a single general 
modeling system. We recast the model learning into new parameter estimation problems, using special 
stochastic parameters (Sect. 3.1) and stochastic piece-wise function approximation theory (Sect. 3.2). We 
then evolve the joint probabilities of the state fields, the regular parameters, and these special parameters, 
using new stochastic DO equations (Sect. 3.3). At each observation time, we perform Bayesian learning 
using the GMM-DO filter with state augmentation (Sect. 3.3). Our methodology does not need to compute 
the discrete marginal likelihoods, ��|ℳ(�|ℳ�); instead, it learns in a parameterized continuous model space. 
We thus extend learning among discrete model formulations to learning within a continuous infinite range 
of formulations as well as across models of different complexities and into unknown models. In other words, 
we remain able to discriminate among existing models, but we can now also interpolate in or extrapolate 
out of the space of models to discover new ones. 

3.1. Special Stochastic Parameters: Compatible and Compatible-embedded Models 

Let us first consider the case where, when according to prior scientific knowledge, the uncertain model 
belongs to a set ˆof compatible candidate functional forms (ℒ[∙]; Eq. 1). In order to recast this learning 
problem with multiple models into a learning problem with a single model and parameter estimation, the 
compatible candidate model functions are added to each other but only after being multiplied with novel 
stochastic parameters. Each of the candidates is thus assigned a special stochastic parameter that can take 
discrete or continuous values depending on the learning objectives and prior knowledge. For example, binary 
values would be utilized to discriminate between presence or absence of certain functions, while other values 
would be utilized to allow some linear interpolation within the space defined by the compatible candidate 
models. To complete Bayesian learning, when observations are collected, the probability distributions of 
these uncertain special parameters (�� (�)’s, � = 1, ..., ��) are updated and their mean values estimated 
alongside these of other regular parameters (�(�; �)), using state augmentation. Summarizing, the general 
model can thus be written as a stochastic linear combination of the candidates, 

∑ ��

ℒ̂[�(�, �; �), �; �] = �� (�)ℒ�[�(�, �; �), �, �; �] . (5) 
�=1 

where the distribution of the �� (�) is updated at each observation time. This new formulation can thus 
both help select active candidate functions and identify their linear combinations. It allows interpolating in 
the space of known candidate functions. 
Next, we extend this approach to learn model complexity (Eq. 2). This is achieved by defining new states 

multiplied with special stochastic parameters, � ′   � ′ 
� = � (�)��, and a general model, ℒ�  , which encompasses

all the candidates in the class of compatible-embedded models, 

�� ′ � (�, �; �) = ℒ′  � [�
′
1 
 (�, �; �), ..., � ′ �� 

(�, �; �), �(�; �), �(�), �, �; �], � = 1, ..., �� (6)
�� 

where �� = max{�� (�)}�� 
�=1. By learning these special parameters, we can eliminate certain state variables 

or aggregate them to form new states, and determine the model of appropriate complexity that best explains 
the observed data. To illustrate such combinations of compatible-embedded models into a general model, 
let us consider a case with only two candidate models (�� = 2 in Eq. 2). Let us further assume that the set 
of states of the first model ({�1, ..., ��� (1)}) are fully contained within the set of states of the second model 
({�1, ..., ��� (1), ..., ��� (2)}), and the goal is to discriminate between the presence or absence of either of the 
model. Using a special stochastic parameter �(�) that is allowed to take only binary values and new states 
� ′ = � ..., � ′ �� (1)+1 (�)��� (1)+1, �� (2) 

= �(�)��� (2), the general model can be written as (based on Eq. 2
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⎪⎪ 1⎨ �−1 �−1 (� − ��−1 � ∈� ) if   ��−1 ,(� −�� � ) 

Ψ� (�) = 1
� � (�

� − ∈�  �) if �  �� , for � ∈ {1, ..., �� } , (10)⎪⎪⎩ (� −� )� � 

0 otherwise { 
1 

� (� − �� 
� ) if � ∈ �� ,

Ψ (�) = (�� −�  ) � 
�� +1

�

0 otherwise 

and omitting explicit dependence on �, �, & � for brevity), 

��1   =(1 − �)ℒ1 1
1[�1, ..., ��� (1), � ] + �ℒ2 ′ ′

1[�1, ..., ��� (1), ��  (1)+1
, ..., �� 

 

�� � � (2)
, �2] , 

. . . 

���� (1) =(1 −     �)ℒ1 1 ′
�  

�
[� 2
1, ..., �

′ 2

  (1) �� (1), � ] + �ℒ�� (1)
[�1, ..., ��� (1), ��  

, 
�(1)+1

..., � �
� � � (2)

, ] , 
�

��′  (7) 
�� (1)+1 

=�ℒ2   
�� (1)+1

[� ′
1, ..., �

� �� (1), �  ..., � 2

� �� (1)+1
, ′

� (2), � ] , � 

. . . 

��′  �� (2)   =�ℒ2 
� [�1, ..., � (2)

� ′
�� (1), �� � (1)+1

, ..., �′ 
�� �� (2)

, �2] , 

where �(�) = 0 leads to the first candidate model, and �(�) = 1 to the second candidate model. In similar 
fashion, we can derive the general model for cases with more than two candidate models, with states in one 
model being aggregate of states in other models, etc. 

3.2. Stochastic Piecewise Linear Function Approximations: Unknown Models 

The above two new uses of special stochastic parameters require a set of candidate functional forms to 
choose from. However, in some cases, there might be no such prior information / candidates available, hence 
the unknown part ℒ̃ of the model (Eq. 1). These model functions then need to be discovered. We thus 
propose to parameterize such an unknown function space using stochastic piece-wise continuous functions. 
In the present work, we consider dense piece-wise linear functions as this representation is both rich and 
simple, and provides practical approximations of any unknown function. It greatly enhances the functional 
space in which we can perform our Bayesian search, and enables the discovery of new learned functions. 
For brevity, let us only consider the scalar case, where ℒ̃ [�(�, �; �); �] is the unknown function (Eq. 1) 

of a single scalar state variable. Also, it is often the case that prior information about the range of values 
taken by the state variable is available, �(�, �; �) ∈ [��, ��], ∀� ∈ � and � ∈ [0, � ]. Now, to define a 
parameterization using continuous piece-wise linear segments, consider the range ℋ = [��, ��] to be an 
indexed collection of intervals with non-zero measure {�� = [�� , �� 

 ]}� � 0≤�≤�� forming a partition of ℋ, i.e.,

⋃ ��

ℋ  ˚ �� �� ∩ ˚ = and �� = ∅ for � = � , (8) 
�=0 

̸

and we use �� + 1 points to discretize the range, such that, 

 �   = �0 < �0 = �1 < ... < ��� −1 �� �� 
� � � � � = �� < �� = �� . (9)

Let {Ψ0, ..., Ψ�� +1} be the linear functions defined on each of these element, { 
1 (�0 

0 − �) if � ∈�  � , (�  
0 

Ψ ) = (� −�� )
0 � 

0 otherwise ⎧ 
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and ��(�) ′ �, � ∈ 0, ..., �� + 1 be �� + 2 stochastic expansion coefcients that parameterize the unknown 
function space by taking a linear combination of the functions defined on each elements. Hence, all together 
we obtain: 

�∑ � +1

ℒ̃[�(�, �; �); �] = ��(�)Ψ� (�(�, �; �)) . (11) 
�=0 

Thus, estimating the stochastic parameters �� ’s, in turn leads to learning of the unknown model function. 
The above formulation ensures �0 continuity in the functional space. The prior distribution of these pa-
rameters define the functional space in which the search is performed. By construction, this parameterized 
space can be made as dense as desired. Throughout this paper, we only consider linear-segments as the 
basis, however, this formulation can be extended to any other basis, such as higher degree polynomials, etc. 

3.3. Bayesian Learning: stochastic DO PDEs, GMM-DO Filter, and Learning Skill 

To provide an accurate and informative prior for our new Bayesian learning paradigm with uncertain and 
unknown nonlinear dynamics and PDEs, we employ Dynamically Orthogonal (DO) equations [47; 48; 49]. 
The DO equations are optimal reduced order differential equations that evolve, based on the governing 
nonlinear dynamics, the dominant probabilistic subspace. Their derivation with uncertain parameters is 
outlined in Appendix A and in Sect. 4.3 for biogeochemical specifics. 
For the Bayesian learning at each observation time, the GMM-DO filter [44; 45] is used to perform 

nonlinear, non-Gaussian updates of the probability distribution of the state variables, as detailed in Appendix 
B. For the joint Bayesian learning of state variables and parameters, we combine the GMM-DO filter with 
state augmentation [50; 43] (Appendix C). Our novel schemes allow for efficient simultaneous Bayesian 
estimation of state variable fields, parameters, and model equations themselves, all while using a single 
modeling system. They recast the learning of compatible and compatible-embedded models into special 
parameter estimations and, to allow discovery of formulations, parameterize the space of unknown model 
functions using piece-wise linear continuous functions. For the former, the learning occurs within the space 
of candidate models while for the latter, it occurs outside of that space and into the space of unknown model 
functions, hence providing the capability for model discovery. Importantly, this discovery is interpretable 
as it is in the form of piece-wise continuous functions. In addition, all of our Bayesian estimations provide 
much more than maximum likelihood estimates: they predict and update the complete joint probability 
distribution of states, parameters, and models. When observations are not sufficiently informative to learn 
and eliminate all but one model, parameter value, or state variable field, our Bayesian learning estimates the 
correct multi-modal pdfs. Our learning can indeed represent ambiguity, e.g. multiple options are possible, or 
even equifinality [51], e.g. a set of model estimates have the same likelihood. It can also signal the presence 
of bias in competing model formulations. Such capabilities will be showcased in Sect. (5). 
To evaluate the learning skill, we first compare the mean fields and parameters with the noisy observa-

tions, using several error metrics. We also analyze the evolution of the pdfs of fields and parameters, as 
well as the convergence of these pdfs with stochastic resolution. The definitions and notation used for the 
hyper-parameters used in the DO methodology and the GMM-DO filter are provided in Table D.2. 

4. Biogeochemical-Physical Equations and Simulated Experiments Setup 

In this section, we describe the specifics of our simulated Bayesian learning experiments. We start 
with the biogeochemical differential equations, their coupling with the physics PDEs, and the stochastic 
DO decomposition with uncertain and unknown terms. This is followed by details of the modeling do-
main, numerical methods, initialization of the stochastic simulations, true solution generation, simulated 
observations, and learning metrics. 

4.1. Biogeochemical Models 

The biogeochemical differential equations that we employ are adapted from [29; 15] and references therein, 
and from Newberger et. al., [52]. They meet the criterion of being compatible with each other, with low 
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complexity models being embedded in higher complexity models (compatible-embedded-models). We will 
utilize three reaction models: the three-component NPZ model, i.e., nutrients (� ), phytoplankton (� ), and 
zooplankton (�); the four-component NPZD model, i.e., � , � , � and Detritus (�); and, the five-component 
NNPZD model, i.e., ammonia (��4), nitrate (��3), � , �, and �. The NPZ model is given by, 

�� � � 
= −� + Ξ� + Γ� + � ��(1 − exp−Λ� 

� ) ,
�� � + �� 

�� � � 
= � − Ξ� − � �(1 − exp −Λ� 

� ) , (12)
�� � + �� 

�� 
= ��(1 − �)�(1  − exp −Λ� ) − Γ� ,

�� 

with � representing the optical model, 

��  � = �� , and �(�) = � exp�� �
0  , (13)

(� 2 
� + �2�2)1/2 

where � is depth and �(�) models the availability of sunlight for photo-chemical reactions. The parameters 
in Eqs. 12 & 13 are: ��, light attenuation by sea water; �, initial slope of the � -� curve; �0, surface photo-
synthetically available radiation; ��, phytoplankton maximum uptake rate; ��, half-saturation constant for 
phytoplankton uptake of nutrients; Ξ, phytoplankton specific mortality rate; ��, zooplankton maximum 
grazing rate; Λ, Ivlev grazing constant; �, fraction of zooplankton grazing egested; and Γ, zooplankton 
specific excretion/mortality rate. In this NPZ model (Eq. 12), the nutrient uptake by phytoplankton is 
governed by a Michaelis-Menten formulation, which amounts to a linear uptake relationship at low nutrient 
concentrations that saturates to a constant at high concentrations. The grazing of phytoplankton by zoo-
plankton follows a similar behavior: their growth rate becomes independent of � in case of abundance, but 
proportional to available � when resources are scarce; hence, zooplankton grazing is modeled by an Ivlev 
function. The death rates of both � and � are linear, and a portion of zooplankton grazing in the form of 
excretion goes directly to nutrients. 
For the NPZD model, the only change is in the addition of detritus, which is the intermediate state 

before dead plankton get converted to nutrients, 

�� � � 
= −� +Φ� + Γ� ,

�� � + �� (14) 
��  = � ��(1 − exp −Λ�� ) + Ξ� − Φ� . 
�� 

However, for the NNPZD model, the nutrients are divided into ammonia and nitrates, which are the 
two most important forms of nitrogen in the ocean [1; 2]. This helps to capture new processes such as 
phytoplankton cells preferentially taking up ammonia over nitrate because the presence of ammonia inhibits 
the activity of the enzyme nitrate reductase essential for the uptake kinetics, the pool of ammonia coming 
from remineralization of detritus, and part of this ammonia pool getting oxidized to become a source of 
nitrate referred to as nitrification, etc. [1; 2; 10]. The NNPZD model is given by, [ ] 

���3 ��3 
= Ω�� −Ψ� ��4

4 − � exp � ,
�� ��3 + �� [ ] 

���4 ��
= − Ω��4 +Φ� + Γ�  4 −� � ,

�� ��4 + �[ � ] 
�� ��3 

= � exp −Ψ� ��4 
��

+ 4 −Λ� � − Ξ� − ���(1 − exp )  (15),
�� ��3 + �� ��4 + �� 

�� 
= � (1 − �)�(1 − exp −Λ� 

� ) − Γ� ,
�� 
�� 

= ����(1  − exp −Λ� ) + Ξ� − Φ� . 
�� 
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The above three models aim to capture the lower-trophic-level (LTL) interactions in the ocean ecosystem. 
They are the Lagrangian or ordinary differential equation (ODE) versions of these models. For realistic ocean 
field simulations, the above rates of change are material derivatives of dynamic tracers that are coupled with 
the physics using advection-diffusion-reaction PDEs. Of course, these models are not directly applicable 
in every ocean region without parameter tuning or modifying the functional form of the reaction terms. 
Regional diversity is one of the reasons for parameter and functional form (model) uncertainties. 

4.2. Coupling with the Physics 

In biogeochemical-physical models, the physics is provided by solving PDEs for the conservation of mass 
and momentum (Navier-Stokes), internal energy, and salt, e.g., the ocean primitive equations [53; 54]. These 
models often contain parameterizations to represent subgrid-scale processes [55; 56]. In the present work, 
we employ the incompressible nonhydrostatic Reynolds-averaged Navier-Stokes (RANS) PDEs [57], 

∇.�(�, �) = 0, � ∈ � , 

��(�, �) (16)
+ ∇.(�(�, �)�(�, �)) = −∇�(�, �) + �� ∇2�(�, �) , � ∈ � ,

�� 

where �(�, �) is the velocity field, �(�, �) the pressure field, and �� the turbulent eddy viscosity. 
The Lagrangian biogeochemical models (Sect. 4.1) are coupled with the physics using stochastic advection-

diffusion-reaction (ADR) PDEs. For �� sto
�

 chastic biogeochemical tracers, � (�, �; �)’s, we obtain, 

���(�, �; �) 
�(�, 

� 

+ ∇.( �)��(�, �; �)) − � �
� ∇2��(�, �; �) = � (�1, ..., ��� , �1(�), ..., ��� (�), �, �; �) ,

�� ⏟  ⏞  ⏟  ⏞  ⏟  ⏞  (17)
Advection Difusion Reaction 

∀� = {1, ..., ��}, 

�

where �(�, �) is the deterministic velocity field 
 

governed by (16), �� is the eddy diffusivity, �� (�1, ..., ��� , 
�1(�), ..., ��� (�), �, �; �) are the reaction terms defined by the right-hand-side of the ODEs of Sect. 4.1, 
and the ��(�)’s, � = {1, ..., �� }, are the uncertain biogeochemical parameters. Biogeochemical reactions are 
nonlinear in nature, hence, the PDEs (17) form a set of strongly nonlinear, stiff, and coupled PDEs. 

4.3. Biogeochemical-Physical Stochastic Dynamically-Orthogonal PDEs 

To solve the system of Eqs. (16 & 17) efficiently, we now develop the DO equations for the stochastic ADR 
PDEs (17) with model and parameter uncertainty. We first separate the reactions into known, uncertain, 
and unknown terms, and write (17) in vector form, 

��(�, �; �) 
+ ∇.(�(�, �)�(�, �; �)) − �� ∇2�(�, �; �) = ��(�(�, �; �), �(�), �(�), �, �; �)

�� (18) 
+ �̂�(�(�, �; �), �(�), �(�), �(�), �, �; �) + �̃�(�(�, �; �), �(�), �, �; �) , 

[ ] [ ]�� � 
� �

. 
 

where � = �� The functional form of the first reaction term ��(∙) = �� (∙) is assumed to be 
�=1 [ ] �=1

�
known, however it contains � uncertain regular parameters �(�) = �� � ̂ 

� . The second term ��(∙) = [ ] �=1̂  �� 

���

(∙) is uncertain: it belongs to a family of candidate functions, parameterized using �� special 
�=1 [ ]�

stochastic parameters �(�) = �� � 
, and may contain uncertain regular parameters �(�). The candidate

�=1 [ ]
            �

models of different complexities are combined using �� special stochastic parameters �(�) = �� � . The
�=1 

��(�)’s multiplied with the original biological tracer fields (as described in Sect. 3.1) are absorbed into ��’s 
and not explicitly shown; however, � (�)’s usually appear on the right-hand-side (RHS) in ��(∙) and �̂�(∙).[ 

 
] � 
�  

���

The third term �̃�(∙) = ̃ (∙) �

has a functional form completely unknown, and is parameterized using 
�=1 
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[ ]�
�� stochastic expansion coefficients �(�) = �� � 

. The DO decomposition for the biogeochemical fields
�=1 

¯into mean �, modes ˜ ��, and stochastic coefficients ��, is given by, 

∑ ��

¯�(�, �; �) = �(�, �) + �̃�(�, �)��(�; �) . (19) 
�=1 

The uncertain regular and special stochastic parameters are split into means and deviations, �(�) = 
�̄ + D�  � +  ¯  (�), �(�) = ¯ D�(�), and �(�) = � + D�(�). For the nonlinear reaction terms in ��(∙) and 
�̂�(∙), as for the nonlinear path planning optimal propulsion term [58; 59], we utilize a local Taylor series 

 ¯  ¯expansion around the statistical means, ¯�(�, �), �, �̄, and �, to locally represent the nonlinear stochastic 
effects in the reaction equations as nonlinear mean terms plus stochastic deviations. As we will exemplify, 
for most uncertainties, such stochastic approximation is efficient for Bayesian learning as it maintains the 
significant computational advantages of DO with respect to the other methods [60]. Finally, for maximum 
accuracy, we evaluate the �̃ [∙] terms for every state realization in a Monte-Carlo fashion. Details on DO 
schemes are provided in Appendix A. Next, we directly provide the DO equations for the mean, modes, 
and stochastic coefficients (omitting function arguments and using �, �, �, and � as summation indices), 

¯��
= −∇ ¯.(��) + �� ∇2�̄+ ��| �

 �= ̄ + �̂ | ̃�
�  ̄  

 �, �� =�, + E[� ] ,
 �=�̄, �=�̄, 

�= ̄   �=� , � ¯

�=�̄  

 

˜ �� ∑ �� 
� 
= �� − ⟨ ˜ ˜ ��, �� ⟩�� ,

�� 
�=1 ⟨ ⃒ ⟩ ⟨ ⃒ ⟩

� � �  
�� ∑� ∑ � ∑ �

� ��� ⃒ 
 ��� ⃒ 

˜ ˜ ˜  = ⟨� ⃒ � �
�, ��⟩�� + ¯ �  ,  ⃒ =�, �� D ⃒  (20)

�� �� � + 
�� ⃒�=�̄, , �� D� 

� �=1 �=1 �=�̄, ¯�=1 �=�, 
�=�̄  �=�̄  ⟨

�� 
⃒ ⟩ ⟨ ⟩∑ � ⃒ ⟩ �  

⟨ ⃒ 
��̂� ⃒ ∑ � ��̂� ⃒ ∑ �⃒  � ⃒  � ��̂� ⃒

˜ ˜ ˜  + ⃒ �=�̄ , ,� D  ⃒ �
� � + �=�̄ ,  

⃒ 
, �� D� + ⃒ ¯  ,�� D  ��� ��� �� �=�, �

� �=1 �=�̄, ¯�=1 �=�, �=1 �=�̄, 
�=�̄, �=�̄, �=�̄, 
�=�̄  �=�̄  �=�̄  ⟨ ⟩ 

+ �̃� − E[�̃�], �̃� , 

where, ⃒ ⃒
� ⃒ ∑�� ∑ �� � ⃒ 

 −∇ ˜  � 2 ˜ �� ��
�� = .(���) + ˜ − 1 

� ∇ �  ⃒ ⃒
� + ⃒ ¯  �� + � �D� � ⃒ ¯  �� �=�, �� �� � � �� �=�,

¯ � �=�, ¯�=1 �=1 �=�, 
�=�̄  �=�̄  

�� 
⃒ ⃒ ⃒∑∑ �� � �

− 1 ��� ⃒ ��̂� ⃒ ∑� ∑ � ��̂� ⃒ 
+   � � �

⃒⃒ ¯  + ⃒⃒ −1
 ˜ ⃒  ��  �� D� �� �� �=�, �� �=�̄, �� + ���  �

�
� D�

� �� ⃒
¯ � �=�̄,

� ¯ ��   �=�, �=�,   �=�̄�=1 �=1 �=1 �=1 , 
�=� ̄   �=�̄, �=�̄ ,

�=�̄   �=�⃒̄ (21)∑�� ∑ �� ̂  ⃒ ∑� ∑  �� � �� ⃒ �� ̂� ⃒ ∑ � 

 −1  ⃒ −  ��
+ � 1

� � � −
� ⃒  1 ̃�

D�� ¯ ��  + � � ¯ + � [�� � ] ,
� � ⃒ �=�, �  �  D  �  ⃒ �=�, �  �  

E
��� 

� � � � � �

  �=�̄
��� ¯�=1 �=1 , �=1 �=1 �=�, �=1 

�=�̄, �=�̄, 
¯ ¯ �=� ⃒ ⃒ �=�

��� ⃒ ��̂� ⃒ 
�� = −∇ ˜ .(���) + � 2

� ∇ ˜ �� + ⃒ ⃒�=�̄ ˜ ⃒ ˜
 , �� + ⃒ �=�̄ , � � ,

�� ¯ ��
�=�, �=�̄, 
� ¯ �=�̄, =�

�=�̄  
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Figure 1: Two-dimensional spatial domain of the fow past a seamount. The seamount is defned by ��−(�−�� )
2/�2 

, 
where � is the characteristic width, � the height, and �� the distance between the inlet and the center of the 
seamount. Observations are collected downstream of the seamount (see example sensor locations inset), with the 
exact observation locations depending on the particular experiment. 

with �∙,∙ representing cross-covariances, E[∙] expectations, and ⟨∙, ∙⟩ spatial inner-products operators. 

4.4. Modeling Domain and Boundary Conditions 

Our modeling domain is inspired from the Stellwagen Bank at the edge of Massachusetts Bay, which is 
a whale feeding ground [61; 62; 10; 63; 64; 65; 66]. The experimental setup consists of a two-dimensional 
domain with a seamount representing an idealized sill (Fig. 1). The mean flow occurs from left to right 
in the positive �-direction over the seamount. Such flows can create upwelling of nutrients, leading to 
phytoplankton blooms, zooplankton responses, and nutrient uptake and recycling. 
A horizontal length scale of � ≈ 1 �� is chosen for the seamount, while the vertical height scale is 

� ≈ 50 �. The overall transverse height of the domain is ��� = 100 �. The longitudinal length of the 
domain is � = 20 ��, with center of the seamount at �� = 7.5 ��. 
Further, we only consider deterministic boundary conditions (BCs) models. The inlet at the left boundary 

has Dirichlet BCs for velocity, and zero Neumann for biological tracers, 

��� 

� = �, � = 0 and = 0, at � = 0 , ∀� ∈ {1, ..., ��} . (22)
�� 

On the top and bottom boundary, free slip for velocity and again zero Neumann for tracers are applied, 

�� ��� 

= 0, � = 0 and = 0, at � = 0 & ℎ , ∀� ∈ {1, ..., ��} . (23)
�� �� 

At the outlet on the right boundary, we have open BCs with zero Neumann for all the state variables, 

�� �� ��� 

= 0, = 0 and = 0, at � = � , ∀� ∈ {1, ..., ��} . (24)
�� �� �� 

Finally, on the obstacle surface, no-slip for velocity and zero Neumann for tracers are used, 

��� ��� 

 
  

� = 0, 
2

� = 0 and = 
2

= 0, at � = ��−(�−�� ) /� , ∀� ∈ {1, ..., ��} . (25)
�� �� 

4.5. Numerical Schemes 

The velocity and pressure fields are governed by the incompressible nonhydrostatic RANS PDEs (16). 
The stochastic biogeochemical fields are coupled with this dynamic RANS flow and governed by a dynamic 
reduced-order representation of the original stochastic ADR PDEs (17), the DO ADR PDEs we derived 
(Eqs. 20 & 21). In all experiments Sect. 4.5, we solve the deterministic RANS-biogeochemical PDEs for the 
true solution as well as the RANS-biogeochemical DO equations for the predicted pdfs using our modular 
finite-volume framework [67]. The physical domain (Sect. 4.4) is discretized using a uniform finite-volume 
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staggered C-grid, for both the flow and stochastic biogeochemical fields. The size of finite volumes in each 
�− and �− direction is equal to Δ� = 1 and Δ� = 1 (non-dimensional) respectively, thus,  a grid-size15 15 
of 300 × 30. Advection is computed explicitly, using a total variation diminishing (TVD) scheme with a 
monotonized flux limiter [68]. Diffusion is treated implicitly, with a second-order central difference scheme. 
All the reaction terms are computed explicitly. To handle the complex boundaries with the structured 
Cartesian grid, a ghost cell immersed boundary method is adopted for accurate enforcement of the boundary 
conditions [69]. For time-marching of the PDEs (RANS, DO mean, and DO modes), we use a first-order 
forward Euler method, while for the stochastic DO coefficient ODEs, we use a four-stage Runge-Kutta 
scheme. A non-dimensional time-step of Δ� = 1 is used in  all the experiments. It is also ensured that240
we satisfy the Courant-Friedrichs-Lewy (CFL) condition at all times. We refer to ([70]) and ([71]) for more 
details on the numerical schemes we employ. 

4.6. Balanced Initialization: Parameters, State Variable Fields, and Probabilities 
The values of the parameters for the physics are chosen such that the flow emulates some coastal ocean 

dynamics. The dimensional barotropic velocity at the inlet is chosen to be � ≈ 10−2 to 10−1 �/�. The 
subgridscale eddy-viscosity is �� ≈ 0.01 to 0.5 �2/�. Considering the vertical length scale of � ≈ 50 m 

  for the seamount, we obtain an eddy-viscosity Reynolds number of �� = �� ≈ 1 to 500. Further, we �  

do not consider any wind-forcing  
�

explicitly. For the initial velocity, we use a divergence free velocity field 
that satisfies the inlet and outlet boundary conditions, and so mass conservation in the given domain. The 
pressure field is initialized to be zero throughout the domain. 
The biological parameters are either deterministic or stochastic. The values of the deterministic param-

eters are kept fixed for every realization, while the stochastic parameters are sampled from their respective 
probability distributions or joint distributions, if available. The stochastic parameters are further divided 
into two categories, regular and special, where the former were originally present in the biogeochemical 
models and have biological meanings associated with them, while the later are introduced for unification 
of candidate models and parameterization of unknown functions. The values of biological parameters used 
in the main experiments are given in Table 1. Probability distributions of all the stochastic parameters 
are assumed to be uniform and independent of each other, unless otherwise specified. In the experiments 
presented in this paper, advection-reaction dominates and the eddy-diffusivity for the biological tracers can 
be taken as negligible, �� ≈ 0, such that the eddy-diffusivity   Peclet number � � = �� → ∞� . Other 

        
� 

experiments (not shown) were also successful however with non-negligible diffusivity, e.g. [43]. In all our 
simulations, a biological time-scale of the order of 1 ��� is used for all non-dimensionalization purposes. 
Following [72; 10; 15; 30], in all the subsequent experiments, biogeochemical fields are initialized in dy-

namical balance, in accord with their stochastic model PDEs (17) and their parameter values. Specifically, 
the initial concentration fields for every sampled realization is obtained by finding an equilibrium solution 
corresponding to its sampled parameter values. These equilibrium fields are found by solving the ODE 
nonlinear biogeochemical models of Sect. 4.1 at all depths. Equilibrium is reached when temporal varia-
tions become negligible, or the system reaches a limit cycle. Further, we also impose the total biomass,∑�� ��

�=1 (�; �) = ����(�), to be conserved, with � to be linearly increasing from 10 ���� � �−3 
��� at the

surface to 30 ���� � �−3 at the depth of 100 �, for all the biogeochemical models. This depth-dependent 
equilibrium solution for each of the biogeochemical state variables is used to initialize the corresponding 
fields in space, with the seamount masked at every � location. We also ensure that none of the realizations 
of the stochastic parameters lead to nonphysical equilibrium solutions, such as negative tracer values. The 
value of 30 ���� � �−3 is used to non-dimensionalize all the biogeochemical fields and parameter values. 
For the non-dimensionalization of parameters, when needed, we additionally use a length-scale of 50 � (the 
height � of the seamount) and a time-scale of 1 ���. 
To initialize the DO decomposition of the biogeochemical fields, after generating the initial fields for 

each realization, we compute their statistical average and use it to initialize the mean biogeochemical fields. 
To initialize the DO modes and stochastic coefficients, we take the singular value decomposition (SVD) of 
the ensemble of mean-removed concatenated fields, keeping the dominant singular values and vectors. We 
account for the differences in the magnitude of the variability of individual biogeochemical tracers before 
taking the SVD, by appropriate normalization based on their standard deviations (Appendix A). 
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4.7. True Solution Generation 
In the present work, twin experiments [73; 74; 75; 76] are conducted and the observations are extracted 

from a simulated truth. To obtain the simulated truth fields for each experiment, a set of parameters and 
initial state fields are sampled. Starting from these initial conditions, the Navier-Stokes PDEs (16) and the 
deterministic version of the ADR PDEs (17) with the true biogeochemical model are numerically integrated. 
The result is the simulated truth solution. In each experiment, all the remaining deterministic parameters, 
modeling domain, and numerical schemes are as these of the stochastic simulation using the DO equations. 

4.8. Observations and Inference 
Sparse observations are taken from the simulated true solution (Sect. 4.7). In each experiment, one of 

the biological tracer fields is observed at 6 to 9 locations (Fig. 1). The observation locations are kept in or 
near the euphotic zone because deeper depths have limited biological variability. The observation schedule 
is also experiment dependent, however, is it is not more frequent than once every non-dimensional  time.√
The observation error standard deviation matrix ( � in Eq. 3) is assumed diagonal. The linear obser-

vation matrix � (Eq. 3) is specified such that it predicts the concentration of the observed tracer field at 
the observation locations by interpolating the concatenated state fields at the observation locations. 
Further, the hyper-parameters related to the DO equations and the GMM-DO filter were chosen based 

on numerical tests and experience [45; 77; 42; 78], for each of the experiments. For the DO equations, the 
number of modes, number of Monte-Carlo coefficient samples, time-step, etc., were selected so as to be 
sufficient to capture the dominant uncertainty and evolving probability distribution for each of the state 
vector fields, parameters, and model equations themselves. For Bayesian learning with the GMM-DO filter, 
the expectation-maximization (EM) algorithm [79] and Bayesian Information Criterion (BIC) [80; 81] were 
employed to select the optimal number of GMM components at each data time. Typical BIC-optimized 
values for �GMM were found to be 10 for the present experiments. 

4.9. Learning Metrics 
We evaluate the performance of our Bayesian learning framework by comparing the learned solution with 

the true solution from which noisy observations were collected and by examining the posterior joint state-
parameter-model probability distributions. For the former solution evaluations, we compare the true fields to 
the DO mean fields, and the true parameter values to the most probable DO pdf values of the parameters. To 
quantify performance, we examine the evolution of the Root Mean Square Error (RMSE) of the biogeochemi-
cal tracer fields, the uncertain regular (�(�)) and special (�(�) & �(�)) parameters, and/or the stochastic ex-
pansion coefficients (�(�)). The RMSE between a evolved stochastic state √ field/parameter estimate �(�, �; �)∫ 
and  its corresponding true field/parameter �����(�, �), is given by, 1 E[(�(�, �; �) − �����

|� (�, �))2| � ]��. 

The square of RMSE hence consists of two contributions [82], one is the square of the �2 distance between 
the mean of the variable in the stochastic run and the simulated truth, while the other is the variance of 
the variable. In every experiment, the RMSE values of each variable are normalized by the corresponding 
RMSE value just before the first assimilation step. For the latter pdf evaluations, we analyze the evolution 
of the posterior pdfs of the stochastic DO coefficients, and of the regular and special stochastic parameters. 
For example, for the DO coefficient realizations, we employ 2-D scatter plots. For the stochastic parameters, 
we use marginals and kernel-density fits. We also evaluate the convergence of pdf estimates with stochastic 
resolution, i.e. increasing/decreasing stochastic numerical parameters (��, �� , etc.), see Sect. 3.3. 

5. Application Results and Discussion 

In order to demonstrate the capabilities of our Bayesian learning we utilize four sets of twin experiments 
with different coupled biogeochemical-physical dynamics and learning objectives, and perform simultaneous 
Bayesian estimation of state variables, parameters, and model equations, using observations that are sparse 
in both space and time. To quantify performance, we evaluate several learning metrics, emphasizing the 
sharpness of the inference and the accuracy of probability distributions. For each of the four sets of experi-
ments, we conduct multiple studies so as to evaluate the sensitivity to hyper-parameters. However, for each 
set, we present detailed results for only one experiment and summarize the other results. 
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5.1. Experiments 1: Discriminating among candidate functional forms 

Biologically, mortality is a linear rate process. The mortality terms of phytoplankton and zooplankton 
however commonly act as “closure” parameterizations in models because as they allow for recycling of 
nutrients directly from plankton. As a result, due to the missing intermediate states in the recycling model, 
the zooplankton mortality and recycling processes are often modeled nonlinearly, with a concentration-
dependent loss rate [3]. In this first set of experiments, we use the NPZ model with uncertainty introduced 
by the ambiguity in the presence or absence of a quadratic zooplankton mortality function, along with the 
uncertainty in the value of the Ivlev grazing parameter (Λ). The uncertainty in the initial biogeochemical 
conditions is set in balance with the uncertain parameters and model equations, as explained in Sect. 4.6. 
The learning objective is to simultaneously learn all the biological states, regular parameter Λ, and functional 
form of zooplankton mortality using a special stochastic parameter, by assimilating sparse observations. 
The right-hand-side of NPZ model (Eq. 12) with the quadratic zooplankton mortality is given by, 

�� � � 
= −  ˜� + Ξ� + Γ� + �(�)(Γ�2) +� ��(1 − exp−Λ(�)� ) �

� + �� ⏟  ⏞ 
Quad. Z Mort. 

 �� � � 
  = � − Ξ� − � −Λ(�)� ) (26)

��(1 − exp
� + �  �

 �� = ��(1 − ˜�)�(1 − exp −Λ(�)� ) − Γ� − �(�)(Γ�2) .⏟  ⏞  
Quad. Z Mort. 

The stochastic parameters are explicitly shown using the realization index (�), and the ambiguous quadratic 
mortality term is pointed out. The special stochastic parameter, �(�), is restricted to binary values, i.e., 
either 0 or 1, corresponding to the absence or presence of the quadratic mortality term, respectively. Λ(�) 
is sampled from a uniform probability distribution between the non-dimensional values of 3 and 6, and �(�) 
is assumed to have an initial 50%-50% probability of being 0 or 1. The stochastic ADR PDEs with the 
above stochastic NPZ reactions (Eq. 26) are coupled with the RANS flow PDEs, and solved with the DO 
methodology (Sects. 4.3–4.5). The other known model parameters related to the physical-biogeochemical 
model as well as the hyper-parameters for the DO equations are provided in Table 1. 

True solution generation: The true solution from which observations are extracted, corresponds to the 
non-dimensional values, 3.6 for Λ, and 1 for �, i.e., the quadratic mortality term present. The true state 
fields are initialized and evolved as described in Sect. 4.7. Observations and learning parameters: The 
observations are sparse in both space and time, and consist of zooplankton measurements at six locations 
downstream of the seamount, only at every two non-dimensional times, starting at � = 5. The data shown 
in Fig. 2 is all that the Bayesian learning framework gets to assimilate over the course of the experiment. 
Other hyper-parameters related to the GMM-DO filtering are provided in Table 1. Learning metrics: As 
time advances, the sparse data are assimilated using the Bayesian GMM-DO filter in the augmented state 
space. We compare the true fields and paramaters to their DO estimates (mean and most probable values). 
To quantify performance, we examine the evolution of the normalized RMSEs (Sect. 4.9) for the N, P, 
and Z fields, and for the Λ(�) and �(�) parameters, as well as the pdfs of the stochastic parameters, DO 
coefficients, and biological states. 

Table 1: Values of the various domain-related, biological, physical, and hyper- parameters used in the four sets of 
experiments.   � = 50 �, ���{����(�)} = 30 ���� � �−3, and time-scale of 1 ���, are the characteristic scales 
used for non-dimensionalization. 
Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 
Biogeochemical model NPZ NPZ & NPZD NPZ NNPZD 

Biological Parameters 
Light attenuation due to sea water, �� (�−1) 0.067 0.067 0.067 0.067 
Initial slope of the P-I curve, � ((� �−2 ���)−1) 0.025 0.025 0.025 0.025 
Surface photosynthetically available radiation, �� 

(� �−2) 
158.075 158.075 158.075 158.075 

Phytoplankton maximum uptake rate, �� (���−1) 1.5 1.5 1.5 1.5 
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Half-saturation for phytoplankton uptake of nutri-
ents, �* 

� (���� � �−3) 
1 1 1 1 

��4 inhibition parameter, Ψ� ((���� � �−3)−1) – – – 1.46 
��4 oxidation coefcient, Ω (���−1) – – – 0.25 
Phytoplankton specifc mortality rate, Ξ (���−1) 0.1 0.1 0.1 unif(0.01, 0.08) 
Zooplankton specifc excretion and mortality rate, 
Γ (���−1) 

0.145 0.145 0.145 unif(0.125, 
0.150) 

Presence/absence of quadratic zooplankton term, 
� 

unif{0, 1} unif{0, 1} – unif{0, 1} 

Quadratic zooplankton specifc excretion and mor-
tality rate, Γ̃ (���−1) 

0.2 0.2 0.2 0.2 

Zooplankton maximum grazing rate, �� (���−1) 0.52 0.52 0.52 unif(0.52, 0.72) 
Ivlev constant, Λ ((���� � �−3)−1) unif(0.1, 0.2) unif(0.1, 0.2) 0.13 unif(0.052, 

0.072) 
Fraction of zooplankton grazing egested, � 0.3 0.3 0.2 0.3 
Detritus decomposition rate, Φ (���−1) 1.03 1.03 1.03 1.03 
Difusion constants – horizontal & vertical, (�� ) 0 0 0 0 

Modeling Domain 
Height of the seamount, � (�) 50 50 50 50 
Characteristic width of the seamount, � (��) 1 1 1 1 
Distance between inlet and center of seamount, �� 

(��) 
7.5 7.5 7.5 7.5 

Domain height, ��� (�) 100 100 100 100 
Domain length, � (��) 20 20 20 20 

Physical Parameters 
Inverse of Eddy-viscosity Reynolds nb., (Λ��) 1 1 1 1/500 

DO Parameters 
Number of Modes, �� 20 40 20 15 
Number of Monte-Carlo samples, �� 10,000 10,000 1,000 10,000 

GMM-DO Parameters 
State being observed √ � � � � 
Observation error standard deviation, ( �) 0.05 0.05 0.035 0.04 
Size of Observation vector, �� 6 6 8 9 
Observation start time (non-dim.) 5 5 1 2 
Time interval between assimilations (non-dim.) 2 2 2 1 
Observation end time (non-dim.) 25 25 25 25 

5.1.1. Learning results 
Figure 3 shows the initial state and parameters of the system (at � = 0), while Fig. 4 shows the evolved 

prior state and parameters of the system at � = 5 (i.e. just before the 1st observational episode). There 
are significant differences between the true and prior DO mean fields of the biogeochemical tracers. During 
these first five non-dimensional time units, a phytoplankton bloom develops just downstream (top-right) 
of the seamount: upwelling of nutrients above the seamount within the euphotic zone feeds the growth in 
phytoplankton biomass in the wake. 
In Fig. 5, we illustrate the evolving statistics of the stochastic dynamical system from � = 0 to � = 5 just 

before data assimilation. We show fields of the phytoplankton standard deviation and dominant three DO 
modes (Panels 5a & 5b). The standard deviation fields clearly highlight the significant uncertainty around 
the phytoplankton subsurface maxima and bloom, reaching 30 percent of the mean field maxima. The 
uncertain subsurface maxima and bloom also clearly affect the DO modes. In Panels 5c & 5d, we show the 
joint distribution of the top four stochastic coefficients, along with the prior GMM fits using 10 components 
(Panel 5d). We use the BIC to find the optimal number of components required [44]. The joint distributions 
demonstrate the highly non-Gaussian nature of the stochastic DO coefficients, which the DO equations are 
able to evolve, and the GMM-DO filter is able account for. The strong parametric uncertainties is reflected 
by the thin 2D joint coefficient distributions. In addition, the realizations of the stochastic coefficients are 
clearly divided into two groups, corresponding to the presence or absence of the quadratic mortality term. 
At � = 5, the first sparse data is assimilated. Fig. 6 shows the posterior mean fields, prior and posterior 

parametric distributions, and the normalized RMSE values for the mean fields and two stochastic parameters. 
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Figure 2: Experiments-1. Time-series of zooplankton concentration data collected at six observation locations (with 
coordinates given in the respective titles). 

Figure 3: Experiments-1: State of the true and estimate NPZ felds and parameters at � = 0 (i.e. initial conditions). 
The frst two columns consist of the non-dimensionalized true (left) and estimate mean (right) tracer felds of N, P 
and Z. In the third column, the top panel shows the variation of normalized root-mean-square-error (RMSE) with 
time for the stochastic state variables and parameters. The next two panels contain the pdf of the non-dimensional 
Λ(�) and �(�) (to learn presence or absence of quadratic zooplankton mortality), with their true unknown values 
marked with blue dotted lines. The velocity feld is deterministic with �� = 1. 
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Figure 4: Experiments-1: As Fig. 3, but for the prior felds and parameters at � = 5 (i.e. just before the 1st 
assimilation). Additionally, the white circles on the zooplankton true feld mark the six observation locations. 

By just observing zooplankton at six locations, the GMM-DO filter simultaneously update all the biological 
fields and parameters. This is evident from the mean fields getting aligned with the true fields and quantified 
by the RMSE reductions of about 20 to 30 percent. Also visible is the slight change in the pdf for Λ(�) and 
a higher probability value for �(�) being one. The six data are so far much more informative about the 
mortality term than about the Ivlev parameter. 
Next, in Fig. 7, we illustrate the same posterior mean fields, prior and posterior parameters, and nor-

malized RMSE values, but at � = 15, i.e., at the sixth data assimilation. The flow is fully developed with 
the biogeochemical fields well learned, as quantified by the normalized RMSEs at about 40 percent. The 
GMM-DO filter unambiguously detects the presence of quadratic mortality of �. The pdf of Λ(�) is also 
accumulated around its true value, but is multi-modal, indicating nonlinearities and remaining ambiguity. 
Finally, at � = 25, after 11 assimilation events, the same quantities are shown in Fig. 8. All the 

biogeochemical mean and true fields match with each other with RMSEs around 20 percent or less. The 
probability of the presence of the quadratic mortality term is now almost one, while the Λ(�) pdf has a clear 
peak near 3.6 with a couple other much lower biased peaks around it. In general, the presence of lower peaks 
in pdfs of parameters indicate alternative combinations that could explain the data, and also the ability of 
the GMM-DO filter to capture non-Gaussian pdfs. The learning is also evident from the sustained decrease 
in the normalized RMSEs at every assimilation step for all the biogeochemical fields and parameters. 
Many similar experiments were completed, changing various hyperparameters related to the GMM-

DO filter, such as the biological variable being observed, observation locations, frequency, start-time, etc. 
Observations from simulated truths with different combinations of Λ(�) and �(�) were also used. We found 
that the biological variable being observed has an impact on the sharpness of the inference or learnability 
of the given learning objectives. For example, observing � led to the learning of two distinct combinations 
of Λ(�) & �(�), 3.1 & 0, and 3.6 & 1, respectively with nearly equal amount of confidence [83]. Decreasing 
the amount of observation data, or increasing the value of the observation error standard deviation led to 
larger uncertainty in the learned states and parameters. We also confirmed the convergence of our GMM-
DO Bayesian posteriors by repeating learning experiments with an increasing number of DO modes and 
coefficients (not shown), until the results converged to those shown. This convergence of the pdfs of the 
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(a) Phytoplankton mean, standard deviation and top 
three DO modes, at � = 0 

(b) Phytoplankton mean, standard deviation and top 
three DO modes, at � = 5 (prior) 

(c) Joint distributions and respective marginals of the 
top four stochastic DO coefcients, at � = 0 

(d) Joint distributions and respective marginals of the 
top four stochastic DO coefcients, along with the GMM 
ft, at � = 5 (prior) 

Figure 5: Experiments-1: Statistics for the initial (� = 0) and prior (� = 5, just before the 1st assimilation) states 
of the stochastic NPZ ADR dynamical system. 

18 



Figure 6: Experiments-1: As Figs. 3 & 4, but for posterior felds and parameters at � = 5 (i.e. just after the 1st 
assimilation). 

Figure 7: Experiments-1: As Figs. 3 & 4 but for posterior felds and parameters at � = 15 (i.e. just after the 6th 
assimilation). 
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Figure 8: Experiments-1: As Figs. 3 & 4 but for posterior felds and parameters at � = 25 (i.e. just after the 11th 
assimilation). 

parameters and DO coefficients, and of the DO modes and mean, indicates that our Bayesian GMM-DO 
filter provides accurate pdf estimates, and thus shows what has been learned without or with some ambiguity 
remaining. For the latter case, the multi-model posterior pdfs show that additional observations are needed 
to sharpen the inference further. 

5.2. Experiments 2: Discriminating among models of diferent complexities 

In the second set of experiments, the primary goal is to learn the complexity of the biogeochemical 
model, e.g., its state variables, along with the biogeochemical fields and Ivlev grazing parameter. Two 
candidates hierarchical model classes, NPZ and NPZD, are considered possible. To represent them with a 
single modeling system, we embed the former into the latter using our special stochastic parameter, �(�). 
We multiply the detritus state variable (�) and other appropriate terms with �(�), such that, the value of 
1 derives the NPZD model, while the value of 0 derives the NPZ model (see Eq. 7). Thus, the RHS of the 
general stochastic model which encompasses both NPZ and NPZD models is given by, 

� � � 
� = −� +Φ� ′ + Γ� + (1 − �(�))Ξ� 

� + �� 

�� � � 
= � −  Ξ� − � �(1 − exp−Λ(�)� )

� + �
�� (27)

� � =  ��(1 − �(�)�)�(1 − exp −Λ(�)� ) − Γ� 

�� ′ = �(�)����(1 −  exp −Λ(�)� ) + �(�)Ξ� −  Φ� ′

� ′ = �(�)� , 

where � ′ is the modified detritus state. Once again, Λ(�) is sampled from a uniform probability distribution 
between the non-dimensional values of 3 and 6, and �(�) is assumed to have 50%-50% probability of being 0 
or 1. The stochastic ADR PDEs with the stochastic NPZD ′ reactions (Eq. 27) are coupled with the RANS 
flow PDEs, and solved with the DO methodology (Sects. 4.3–4.5). The other known physical-biogeochemical 
parameters as well as the hyper-parameters for the DO equations are given in Table 1. 
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True solution generation: The true solution corresponds to the NPZ model with a non-dimensional 
value of 3.6 for the Λ parameter. The state fields are initialized and evolved as described in Sect. 4.7. 
Observations and learning parameters: The observations are sparse in both space and time, and again 
consist of zooplankton measurements at six locations downstream of the seamount, only at every two non-
dimensional times, starting at � = 5. Other hyper-parameters related to the GMM-DO filtering are provided 
in Table 1. Learning metrics: As time advances and sparse data are assimilated, we compare the true fields 
and parameters to their DO estimates. To quantify performance, we examine the evolution of the normalized 
RMSEs of state fields and parameters, pdfs of stochastic parameters, and variances of DO coefficients. 

5.2.1. Learning results 
Figure 9 shows the state and parameters of the system at � = 5, just before the first observational 

episode. The most distinctive difference is between the true and mean detritus fields. Since the true model 
is NPZ, the true detritus field is equal to zero, while the mean detritus field is non-zero because half of the 
realizations correspond to the NPZD model. The RMSEs of all the variables exactly equal 1, because their 
respective values just before the first assimilation were used for normalization. The pdf of Λ(�) is uniform 
in the main range, and �(�) has 0.5 probability of being 0 or 1. The variances of the top five modes show 
a rapid decay with mode number, with the top two variances orders of magnitude larger. The variances of 
modes 3 and 4 differ initially but become similar over time, indicating a potential cross-over at � = 5. 
In Fig. 10, we directly show the state of the system at time � = 25, after eleven GMM-DO data as-

similation (six zooplankton values every two non-dimensional times). We find that our Bayesian learning 
framework is able to learn the true model to be NPZ, along with the posterior pdf of Λ(�) concentrated 
around the true value of 3.6. The mean fields also match the true fields, especially the detritus mean field 
becoming very close to 0 at all the spatial locations. The RMSEs for all the variables decrease over time, 
up to about � = 15. At that time, the RMSE for the phytoplankton field increases due to a mismatch in 
the strength of the bloom, thus showing that the zooplankton data are not sufficiently informative for the 
same. The pdf of Λ(�) features multiple peaks and thus still indicates that competing hypotheses remain 
for different pairs of parameter values; this was already the case in the intermediate assimilation steps (not 
shown). The evolution of the variances of the top five modes shows that these variances can increase and 
cross-over, for example, lower modes become more important as learning progresses. As the bloom develops, 
more complex nonlinear dynamics are activated, leading to the growth of some uncertainty modes. Results 
show that our Bayesian filter captures this as well as biases and non-Gaussian behaviors in the pdfs. 
We performed other experiments with parameter sensitivity studies similar to those of Experiments-1; 

similar trends were found. 

5.3. Experiments 3: Learning unknown functional forms 

In our third set of experiments, the primary goal is to learn the functional form of the zooplankton 
mortality without any prior knowledge of candidate forms, along with the uncertain biological tracer fields. 
We utilize stochastic piece-wise linear functions to parameterize a large set of possible functional forms 
within a specified range, as explained in Sect. 3.2. Such a parameterization encompasses many different 
classes of functions, for example, polynomial, exponential, logarithmic, sinusoidal, etc. The right-hand-side 
of the stochastic NPZ model with the unknown function is given by, 

� � � 
=  �  �  −� + Ξ� + Γ + � (�; �) +����(1 − exp−Λ� )

� + �� ⏟  ⏞  
Unknown Function 

� � � 
� = � − Ξ� − � �(1 − exp−Λ� 

� ) (28)
� + �� 

 �� = � −
�(1 − �)�(1 − exp Λ� ) − Γ� − � (�; �)⏟  ⏞  

Unknown Function 

From prior knowledge [52], the non-dimensional value of zooplankton is assumed non negative and its 
maximum value to be 0.3. Thus, � (�; �) is set to be composed of any continuous piece-wise linear segments 
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Figure 9: Experiments-2: State of the true and prior estimate NPZD felds and parameters at � = 5 (i.e. just before 
the 1st assimilation). The frst two columns consist of the non-dimensionalized true (left) and estimate mean (right) 
tracer felds of � , � , �, and �. In the third column, the frst panel shows the variation of normalized RMSE with 
time for all the stochastic state variables and parameters. The next two panels contain the pdf of the non-dimensional 
Λ(�) and �(�) (to learn the complexity, NPZ vs. NPZD), with their true unknown values marked with blue dotted 
lines. The last panel shows the evolution with time of the variance (log scale) of the top fve modes. The velocity feld 
is deterministic with �� = 1. Additionally, the white circles on the zooplankton true feld mark the six observation 
locations. 

in the interval � ∈ [0, 0.3]. Dividing this interval [0, 0.3] into 10 equal non-overlapping sections, such that, 
0 = �0  

� < �0� = 0.03 = �1 ... < �9 
� <  � = 0.27 = �10 < �10 

� � = 0.3, � (�; �) is thus represented as,

∑ 11

� (�; �) = �� (�)Ψ�(�) (29) 
�=0 

where, { 
1 (0.03 − �) if 0 ≤ � ≤ 0.03 ,

Ψ 0.03
0(�) = 

0 otherwise ⎧ ⎪⎪ 1   �−1   �−1 �−1 ⎨ (��−1 ��−1 (� − � ≤ ≤
− � ) if ��  �  �� ,

)� � 

Ψ�(�) = 1
� � (�

� −�  �) if �� ≤�  �  � ≤ � , for � ∈ {1, ..., 10} , (30) ⎪⎪ (� −� ) �⎩ � � 

0 otherwise { 
1 (� − 0.27) if 0.27 ≤ � ≤ 0.3 ,

Ψ 0.03
11(�) = 

0 otherwise 

Each set of realizations of � ′ ∈ { }� �, � 0, ..., 11  are sampled so as to avoid a prior with unnatural highly
fluctuating functions. The function range is set within 0 and 0.08; it is non-negative as mortality is negative 
in the zooplankton equation (28). To initialize the tracer fields, we find equilibrium solutions corresponding 
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Figure 10: Experiments-2: As Fig. 9 but for posterior felds and parameters at � = 25 (i.e. just after the 11th 
assimilation). 

to each realization of the zooplankton mortality function. The stochastic ADR PDEs with the stochastic 
NPZ reactions (Eq. 28) are coupled with the RANS flow PDEs, and solved with the DO methodology (Sects. 
4.3–4.5). Table 1 provides the values of other known model and hyper- parameters. The learning objective 
of these experiments is to learn � (�; �) by estimating � ′ � � along with the biological tracer fields. 

True solution generation: The true solution contains quadratic zooplankton mortality, with values of the 
other parameters provided in Table 1. Observations and learning parameters: Observations remain sparse 
in time and space, but here they consist of the nutrient field at 8 spatial locations, starting at � = 1 and 
occurring every two non-dimensional times. In these experiments, we start the assimilation at the earlier 
� = 1 time in order to limit the exploding growth of uncertainty in the system, because each function 
realization leads to very different biological dynamics, several of which would lead to nonphysical biological 
states. Other hyper-parameters related to the GMM-DO filtering are provided in Table 1. Learning metrics: 
We compare the true fields and parameters to their DO estimates. To quantify performance, we also examine 
the evolution of the normalized RMSEs and pdf and realizations of the stochastic piece-wise linear functions. 

5.3.1. Learning results 
Figure 11 illustrates the prior at � = 1. Every realization in the space of the unknown function is assumed 

to be equilikely. In general, mortality being 0 for � = 0 is common knowledge. Otherwise, it could act as a 
sink for zooplankton and lead to negative tracer values. However, we let this be discovered by the learning 
algorithm. The DO biogeochemical mean fields are quite far from the unknown true fields, and the prior 
function realizations are not similar to the true quadratic mortality. 
As the eight � observations are assimilated every two non-dimensional times, nearly all the piece-wise 

linear function realizations converge to the true quadratic mortality. Results after 13 GMM-DO assimilation 
in Fig. 12 show this. We find however that the � data are not as informative about mortality function 
for � beyond 0.25. This is in part because the maximum value reached in the true � field is ∼ 0.2, which 
limits the uncertainty reduction in the larger � regime. The mean fields also converge to the true fields. 
The normalized RMSEs of all the biogeochemical fields indeed decrease at each assimilation. The learned 
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Figure 11: Experiments-3: State of the true and prior estimate NPZ felds and parameters at � = 1 (i.e. just 
before the 1st assimilation). The frst two columns consist of the non-dimensionalized true (left) and estimate mean 
(right) tracer felds of � , � and �. In the third column, the frst panel shows the evolution of normalized RMSE 
for all the stochastic state variables. The second panel contains all the realizations of the unknown functional form 
approximated by piece-wise linear segments. The function realizations are colored according to their respective 
normalized probability density values. The velocity feld is deterministic with �� = 1. Additionally, the white circles 
on the nutrient true feld mark the 8 observation locations. 

phytoplankton mean field however remain a bit higher than true fields, in part because they were much 
higher initially. It is also because the observed data (here eight � data) are not equally informative about 
all the learning objectives. As in [84; 85; 82], this is confirmed by mutual information fields (not shown). 
Other experiments included studying the effect of incorporating or excluding prior knowledge such as the 

function value being 0 for � = 0 and using smoothly varying function realizations. For the former, sampling 
��’s independent of each other led to highly fluctuating function realizations which completely impaired the 
learnability of the unknown function. For the latter, enforcing �0 = 0 sets � (0; �) = 0 for all realizations 
improved the convergence among the learned function realizations and the true function. Finally, increasing 
the number of independent observations (more � data, data for � or � as well, etc.) also improved the 
sharpness of our GMM-DO inference: in all examples we show, we highlight cases with sparse observations 
as seen in real ocean applications. 

5.4. Experiments 4: Learning in chaotic dynamics 

In the last set of experiments, in order to robustly test our algorithms, the aim is to learn a five-component 
NNPZD model with a flow of Reynolds number �� = 500. At such high ��, vortices start to shed in the 
wake of the seamount and the flow chaotic. The learning objectives include all 5 biogeochemical fields, 
the Ivlev grazing parameter (Λ), the phytoplankton-specific mortality rate (Ξ), the zooplankton maximum 
grazing rate (��), the zooplankton specific mortality (Γ), and the presence or absence of the quadratic 
zooplankton mortality term. The stochastic NNPZD reactions, with all the uncertain parameters explicitly 
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Figure 12: Experiments-3: As Fig. 11 but for posterior felds and function at � = 25 (i.e. just after the 13th 
assimilation). 

containing � as an argument, are given by, [ ] 
� ��3

� �3 = Ω�� − � exp− Ψ� ��4
4 � ,

��3 + �� [ ] 
� ��

� �4 = − Ω��4 +Φ� +  4
Γ(�)� + �(�) (Γ2�

2) −� � ,⏟  ⏞  ��4 + �� [ Quad. Z ] Mort.
��3 

�� = � exp− Ψ� ��4 
��4

+ � − Ξ(�)� , (31)
��3 + �� ��4 + �� 

− ��(�)�(1 − exp −Λ(�)� ) ,
 �� = ��(�)(1 − �)�(1 − exp −Λ(�)� ) − Γ(�)� + �(�) (Γ 2⏟ 2� ) , ⏞  

Quad. Z Mort. 

�� = � (�)��(1 − exp −Λ(�)� 
� ) + Ξ(�)� − Φ� . 

Initially, we assume uniform and independent pdfs for the 4 uncertain regular parameters and equiprobability 
for the quadratic zooplankton mortality term to be present or absent. The stochastic ADR PDEs with the 
stochastic NNPZD reactions (31) are coupled with the deterministic RANS flow PDEs, and solved with the 
DO methodology (Sects. 4.3–4.5). The other known physical-biogeochemical model parameters as well as 
the hyper-parameters for the DO equations are provided in Table 1. 

True solution generation: The true solution from which observations are extracted, corresponds to the 
non-dimensional values, 1.5 for Λ, 0.04 for Ξ, 0.6 for ��, 0.14 for Γ, and 0 for �, i.e. the quadratic mortality 
term absent. The state fields are initialized and evolved as described in Sect. 4.7. Observations and learning 
parameters: Observations remain sparse and univariate, but due to the unstable and fast dynamics of the 
flow, there is a need for slightly more frequent data than in other experiments. The phytoplankton field 
is observed at nine locations starting at � = 2 and subsequently every one non-dimensional time. In total, 
we assimilate 24 times, i.e. until � = 25. Other hyper-parameters related to the GMM-DO filtering are 
provided in Table 1. Learning metrics: We compare the true fields and parameters to their DO estimates. 
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To quantify performance, we compute the evolution of the normalized RMSEs for all the 5 biological fields 
and 5 stochastic parameters. We also analyze the evolution of pdfs of the regular and special stochastic 
parameters, and the variances of DO coefficients. 

5.4.1. Learning results 
Figure 13 shows the prior estimates at � = 2. The flow has just started to develop. There are significant 

differences between the true and mean biogeochemical fields. The normalized RMSEs are equal to 1 by 
construction. The pdfs of all parameters remained as they were initially since no data has been assimilated. 
Figure 14 illustrates the posterior estimates at � = 2, just after the first assimilation. Large corrections 

were made to the mean tracer fields (also visible in their RMSEs that decay by about 15 to 25%), and the 
GMM-DO learning already predicts the absence of quadratic zooplankton term. These first 9 � observations 
are not as informative however about the other parameters (their RMSEs only decay by about 4% to 8%). 
Figure 15 shows the estimates at � = 25, after 24 GMM-DO assimilation steps. In addition to the mean 

fields, our augmented filter has been learning the 4 regular parameters. Their posterior pdfs have become 
Gaussian which has occurred in intermediate assimilation steps (not shown). We also show the evolution of 
variance of the top 3 modes. We find that the total variance on average either decreases or remains similar, 
while that of individual modes in general decreases but may also increase in accord with the stochastic 
dynamics. The velocity field being chaotic renders the learning more challenging in this experiment but our 
framework can still meet all the learning objectives, even with sparse and univariate data. 
Other experiments were performed. As expected, they demonstrated sensitivity to the schedule, type, 

and quantity of observations. With only nine sparse and univariate data, starting them after the chaos 
sets in, or sampling even less frequently than every one non-dimensional time, led to posterior pdf of some 
stochastic parameters that were not concentrated around their respective true values. Similar results were 
found even when less than nine data were collected. Adding other observation types improved the learning. 
For other sensitivity studies, trends similar to other experiments were found. 

6. Conclusions 

Biogeochemical-physical models for the ocean are inherently uncertain due to the inability to capture 
all the complex marine interactions and processes with a single mathematical model. Uncertainty manifests 
itself in many different forms including the initial conditions, boundary conditions, parameters, parame-
terizations, state variables, and the model complexity and equations themselves. In this work, we develop 
a principled Bayesian model learning methodology that interpolates in the space of candidate models and 
discovers model formulations, all while estimating state variable fields and parameter values, as well as the 
joint probability distributions of all learned quantities. It employs the GMM-DO filter and state augmen-
tation to predict and update pdfs of high-dimensional and multidisciplinary ecosystem dynamics governed 
by PDEs. Using sparse observations and Bayes’ law, the complete joint probabilities of biogeochemical-
physical fields and parameters, and of known, uncertain, and unknown model formulations are updated. 
Non-Gaussian statistics, ambiguity, and biases are captured. The parameter values and the model formula-
tions that best explain the data are identified. A first crucial innovation are special stochastic parameters 
that unify compatible candidate models, possibly of different complexities, into a single general stochastic 
PDEs system. A second are stochastic piecewise function approximations that generate dense candidate 
model spaces. Our new methodology is generalizable and interpretable, and provides marginal pdfs for all 
learned model quantities. At the cost of single stochastic model simulation with parameter estimation, it 
seamlessly and rigorously discriminates among many existing models, possibly none of which are accurate, 
but also extrapolates out of the space of models to discover new ones. 
The performance of our Bayesian learning framework was evaluated using a series of twin experiments 

based on flows past a seamount with compatible and embedded PDEs for the three-component NPZ model 
(nutrients (� ), phytoplankton (� ), and zooplankton (�)), four-component NPZD model (� , � , � and De-
tritus (�)), and five-component NNPZD model (ammonia (��4), nitrate (��3), � , �, and �). In the first 
set of experiments, we use the NPZ model with uncertain initial conditions, unknown Ivlev grazing param-
eter value, and ambiguity in the presence or absence of the quadratic zooplankton mortality term. Our new 
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Figure 13: Experiments-4: State of the true and prior estimate NNPZD felds and parameters at � = 2 (i.e. just 
before the 1st assimilation). The frst two columns consist of the non-dimensionalized true (left) and estimate mean 
(right) felds of ��3, ��4, � , �, and �. In the third column, the frst two panels show the evolution of the 
normalized RMSEs for the 5 state variables and 5 parameters. The third panel shows the evolution of variance of 
the top 3 DO modes. In the fourth column, the panels contain the pdf of the non-dimensional Λ(�), Ξ(�), ��(�), 
Γ(�), and �(�) (learns the presence or absence of quadratic zooplankton mortality), with their true unknown values 
marked with blue dotted lines. The velocity feld is deterministic with �� = 500. Additionally, the white circles on 
the phytoplankton true feld mark the 9 observation locations. 

Bayesian learning simultaneously estimated the state variables, Ivlev parameter, and unknown functional 
form, just using sparse Z observations in space and time (six data points every two non-dimensional times). 
The posterior pdf of the parameter contained secondary peaks, indicating that alternative combinations of 
parameter values could explain the observed data. This showcased the ability of our framework to capture 
non-Gaussian statistics including ambiguity and biases. In the second set of experiments, assimilating just 
eight N data every two non-dimensional times, we demonstrated the ability to learn the complexity of the 
model. We identified the true model within NPZ and NPZD, along with the uncertain fields and Ivlev grazing 
parameter. In the third set of experiments, we assumed no prior knowledge about the functional form of zoo-
plankton mortality and generated a dense function space using stochastic piece-wise linear approximations. 
Assimilating just eight N data every two non-dimensional times, our framework then searched in this rich 
functional space, estimated the fields and regular parameter values, and was shown capable of discovering 
the mortality function. The last set of experiments involved learning the complex NNPZD model in an un-
steady chaotic deterministic flow with vortex shedding. The NNPZD model had uncertainty in all the tracer 
fields, four parameters, and in the presence or absence of the zooplankton mortality term. All of the learning 
objectives were achieved simultaneously, using only nine P data point every non-dimensional time. In all 
cases, we quantified the learning skill, and evaluated convergence and the sensitivity to hyper-parameters. 
These four sets of experiments were complementary, allowing us to showcase the features of our PDE 

Bayesian learning framework. It successfully discriminates among functional forms and model complexities, 
and also learns in the absence of prior knowledge by searching in dense function spaces. The next steps 
include applying this framework to more complex ocean applications. Even though we demonstrate our 
learning framework using biogeochemical models, it is applicable to many domains with model uncertainty, 
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Figure 14: Experiments-4: As Fig. 13, but for posterior felds and parameters at � = 2 (i.e. just after the 1st 
assimilation). 

Figure 15: Experiments-4: As Fig. 13, but for posterior felds and parameters at � = 25 (i.e. just after the 24th 
assimilation). 
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for example, medicine, economics, energy, etc. Our framework can provide scientists not only the ability to 
choose between competing existing hypotheses but to also discover new ones in an principled manner. 
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Appendix A. Dynamically Orthogonal (DO) Equations 

In this appendix, we derive the dynamically orthogonal (DO) equations [47; 48; 71; 49] for optimal 
reduced-order probabilistic evolution of high-dimensional stochastic dynamical systems with regular and 
special parametric uncertainties for known, uncertain, and unknown model formulations. 
The general stochastic nonlinear dynamical system governs the dynamics of �(�, �; �) : R�×[0, � ] → R�� , 

the stochastic state vector comprising �� physical-biogeochemical fields defined on a spatial domain �, where 
� is the realization index belonging to a measurable sample space Ω. It is is given by, 

��(�, �; �) 
= ℒ[�(�, �; �), �(�), �(�), �, �; �] + ℒ̂[�(�, �; �), �(�), �, �; �] + ̃ 

�� 
ℒ[�(�, �; �), �(�), �, �; �], 

� ∈ �, � ∈ [0, � ], � ∈ Ω , 

with �(�, 0; �) = ��(�; �) , 

and ℬ[�(�, �; �)] = �(�, �; �), � ∈ ��, � ∈ [0, � ], � ∈ Ω , 
(A.1) 

where ��(�; �), ℬ, and �(�, �; �) are the stochastic initial conditions, boundary condition operators, and 
boundary values respectively. The functional form of the first dynamics term ℒ[∙] is assumed to be known, 
however it contains �  uncertain regular parameters �(�). The second term ℒ̂ 

� [∙] is uncertain: it belongs to 
a family of candidate functions, parameterized using �  

̂ 
� special stochastic parameters �(�). ℒ[∙] can also 

contain uncertain regular parameters �(�). The candidate models of different complexities are combined 
using �� special stochastic parameters �(�). The �� (�)’s multiplied with the original state variables (as 
described in Sect. 3.1) are absorbed into ��’s and not explicitly shown; however, �� (�)’s can still appear on 
the right-hand-side (RHS) in ℒ[∙] and ℒ̂[∙]. The third term ℒ̃[∙] has a functional form completely unknown, 
and is parameterized using �� stochastic expansion coefficients �(�). 
The DO methodology employs a generalized, time-dependent Karhunen-Loéve decomposition of �(�, �; �) 

¯into  ˜a mean, �(�, �) ∈ R�� , �� deterministic modes, ��(�, �) ∈ R�� , and stochastic coefficients, ��(�; �) ∈ R, 

∑ ��

¯�(�, �; �) = �(�, �) + � ˜
�(�; �)��(�, �) . (A.2) 

�=1 

We define the stochastic subspace � = ����{� ̃  
� �(�, �)}�� 

�=1 as the linear space spanned by the �� determin-
istic modes that evolve to capture the dominant uncertainty in �� . In general, the number of modes �� is 
orders of magnitude smaller than the dimension of the discretized state variables or of the domain grid ��, 
i.e. �� ≪ ����. Similarly, uncertain regular and special parameters are split into means and deviations, 

�̄ + D� �(�) = (�),  ¯  �(�) = �̄  + D�(�), and �(�) = � + D�(�). 
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Nonlinear terms on the RHS are handled using local Taylor series expansion around the statistical means 
of states and parameters. We use first order Taylor series expansion for the ℒ[∙] and ℒ̂[∙] terms, ⃒ ⃒ 

ℒ 
�� �� 

⃒
� ⃒ ∑ ∑ �ℒ ⃒  ∑�� 

�ℒ ⃒ ℒ[�(�, �; ˜ � �), �(�), �(�), �, �; �] ≈ ℒ|  ⃒ ⃒ �
  ⃒  �=�̄, + ⃒�=�̄, ���� + ⃒�=�̄, D �

¯ � � + ⃒�=�̄, D ,
 �  

¯ ���   ¯ �� 
�=�, �=�,   �=�,  �=�̄  �=1 �=1 �=1 , 
�=�̄  �=�̄    �=�̄ �=�⃒̄ �� �� 

⃒⃒ ∑ ∑̂ �ℒ̂ �ℒ̂  ⃒
 ℒ[�(�, �; �), �(�), �, �; �] ≈ ℒ|̂  ⃒ ˜ ⃒ �

�=� ̄ , + ���� + D
 ⃒ ⃒ � .
�=�̄ , =�̄ � ,�=�̄ �� ��� �=1 �=1�=�̄ �=�̄ 

(A.3) 

Using a higher-order polynomial approximation leads to higher accuracy for the DO evolution, but also 
increases computational costs. For analyses of the scaling of computational costs with the order of polynomial
approximation, we refer to [83; 86]. Handling the ℒ̃ [∙] term is less straightforward because of the need to 
evaluate the interval in which each state realization value lies at all discrete times and spatial locations in 
the domain (see Sect. 3.2). Thus, for maximum accuracy, we directly evaluate the ℒ̃[∙] terms for every state 
realization in a Monte-Carlo fashion. To increase efficiency without much loss of accuracy, recent techniques 
such as dynamic clustering [87; 88; 89] could also be used. 
To derive the DO equations, we substitute the KL decomposition (Eq. A.2) into the stochastic system 

(Eq. A.1). To obtain an efficient closed-form dynamical system, without loss of generality, we impose the 
DO condition [47]: the rate of change of the stochastic subspace is orthogonal to itself, ⟨ ⟩ 

�� ˜
� ���(�, �) ⊥ � ˜

� ⇔ , �� (�, �) = 0 ∀�, � ∈ {1, ..., ��} , (A.4)
�� �� ∫ ∑ 

where ⟨�, �⟩ = (����)���  denotes the spatial inner-product of vectors � = [�1, �2 , ...]� and � =  � 
[�1, �2 , ...]� . Note that the DO condition (A.4) also implies the preservation of orthogonality for the ba-
sis {�̃�(�, �)}�� 

�=1 themselves [70]. Substituting Eq. (A.2) into Eq. (A.1), and using Eq. (A.4) and the above 
schemes for nonlinear terms, we derive independent evolution equations for the DO mean, modes, and 
stochastic coefficients. These are the DO evolution equations (omitting function arguments for brevity), 

¯ ��
= ℒ|  + ̂ �=�̄, ℒ| �=�̄ , + E[ ℒ̃ ] ,

�� ¯ � ¯ =�, �=�, 
�= ̄   �= �̄, �

�=�̄  

˜ � ∑ �
� �

� 
= �� − ⟨ ˜ ˜ ��, �� ⟩�� ,

�� 
 �=1 ⟨ ⟩ ⟨ ⟩

� ∑ �� �� 
⃒ � ⃒ 

� ∑
� �ℒ ⃒  ∑� ℒ ⃒

⟨  ˜ + ⃒ ˜ = � ,� ⟩�  ⃒ ,� D� � � 
� � � ¯  

⃒ ˜ 
�=�, , 

 � � + 
 ⃒ �=�̄ , �� D (A.5)

� �� ��� ��
�=1 �=1 �=�̄   , ¯�=1 �=�, 

�=�̄   ⟨ ⟩ ⟨ ⟩ �=�⃒̄ ⃒ ⟨ ⃒ ⟩∑�� �ℒ̂ ⃒ ∑ �� ∑ �  
�ℒ̂ ⃒ �

�ℒ̂ ⃒
 ⃒   ˜  ⃒ ˜ ⃒ � ⃒ ˜ � + �

  
�� �=�̄, ,�� D� + ⃒�� �=�̄, , �� D� + ⃒ �=�̄, , �� D� 

� ¯ � ¯ ��� �=1 �=�, �=1 �=�, �=1 �=�̄, 
�=�̄, �=�̄, �=�̄, 
�=�̄    ⟨ ⟩ �=�̄ �=�̄̃ ˜+ ℒ − E[ℒ̃], �� , 
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where, ⃒⃒ �� �� 
⃒ ⃒

�ℒ ∑∑ 
− �ℒ ⃒ ∑ �� ∑ �� ⃒

 ˜� = ⃒⃒ � + � 1 1 �
�  

⃒ ℒ
 , ¯�  �−  

� ¯ �  �= � � � + � 
 

� ⃒ ¯
�� � � D� �� ⃒  � �=�, �  ⃒ �, � � D �  �=

¯ � 
� � � � ��� �= �, �̄�=1 �=1 �= , �=1 �=1 �=�̄,

�=�̄  �=�̄  �=�̄  ⃒ �
�ℒ̂  ⃒ ∑� ∑ ⃒ � � 

⃒
� ⃒ ∑ ∑ � 

⃒
ℒ̂ �� �

− �ℒ̂ 
− ⃒

˜+   ⃒ �= �̄, �� + � 1 � ⃒ 1
 ⃒

 D� �� ⃒ �=� ̄ , + � �D��� ⃒ �= �̄�� ���� � � �  � ,
¯ ��� 

� � ��� �= �, �=1 �=1 �= �̄, �=�̄�=1 �=1 ,
�=�̄, �=�̄, �=�̄, 
�=�̄  �=�̄  �=�̄  

� 
⃒ (A.6)∑� ∑ �� ⃒ ∑ �

�ℒ̂ 
�

⃒ �

 �−1 + �−1 �  ¯ + [� ̃
� � ℒ] ,��� D� �� ⃒ �= �, �� �� 

E
��� ¯�=1 �=1 �=�, �=1 

�=�̄, 
�=�̄  ⃒ ⃒

�ℒ ⃒⃒ �ℒ̂  ⃒
˜� ⃒

 ⃒  �  �� + ˜
� = ¯ �= ,  ⃒  �=�̄, �� ,

�� ¯ ��
�=� , �=� ̄ ,

 ̄   �=� ̄ ,�=�
�=�̄  

 and E[∙] represents the expectation operator, �−1� � the inverse of the cross-covariance between the ��ℎ and
� � 

��ℎ stochastic coefficients, and ����� is given by, 

���,�� = E[��(�; �)�� (�; �)] . (A.7) 

As discussed in ([83; 86; 69]), the boundary conditions are also obtained by inserting DO decompositions in 
Eq. (A.1). This yields for the mean fields, 

ℬ[�̄(�, �)]|�∈�� = E[�(�, �; �)] , (A.8) 

and for the modes fields, 

∑ ��

ℬ[�̃ 
�(�, �)]|�∈�� = E  [�� (�; �)�(�, �; �)]�

−1
� . (A.9)
��� 

�=1 

Similarly, the initial conditions in Eq. (A.2) are approximated by using the DO decomposition of the initial 
stochastic fields ��(�; �). 
Finally, the stochastic dynamical system (Eq. A.1) is multivariate and we normalize the spatial inner-

product operator using appropriate scaling, so as to account for the different uncertainty magnitudes of state 
variables [76; 90; 72; 91; 92]. For the present DO ˜mo  ˜�des ��(�, ˜ �) = [�1� (�, �), ..., �

� 

� (�, �)], the normalized
spatial inner-product is, 

∑ � ( ) ∫ � 
1 1 ⟨˜   ˜  ⟩ ˜� ˜  ��(�, �),�� (�, �) = � ��

� � ��  , (A.10)
|�| �2� ��,� �=1 

where |�| is the volume (area) of the domain and ���,� is the expected volume-averaged standard deviations 
of state variable �. These ���,� ’s normalize the relative weights given to state variables in the inner-product. 

Appendix B. Gaussian Mixture Model (GMM)-DO Filter 

The GMM-DO filter [44; 45] consists of a recursive succession in time of two steps: a forecast DO step 
(Appendix A) and a Bayesian update step. Using the affine transformation between stochastic coefficients 
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and state variables (Eq. A.2), the GMM-DO filter obtains the Bayesian update of the state variable dis-
tribution through an equivalent update of the stochastic coefficient distribution. The result is an efficient 
reduced-dimension Bayesian state variable inference [44]. Next, we assume the DO coefficients of the discrete 
state variables are augmented with the regular and special parameters (see Appendix C). 
For the Bayesian update, the GMM-DO filter first represents the prior probability distribution of the 

stochastic coefficients in the DO subspace using a GMM, 

�∑ GMM

� �  � �  �� � (� ) ≈ �� × ,�  � (� � ; � , Σ ) ∀� � ∈ R�� 
� ,� � ,� , (B.1)

�=1 

  where �GMM is the to-be-determined number of �GMM components, � ∈  [0, 1] the ��ℎ 
� ,� component weight ∑�GMM � � � (also � � = 1), � �ℎ 

=1 � ,� � ,� the � component mean vector, and Σ the ��ℎ 
� ,� component covariance 

matrix. This approximation is found by performing a semiparametric fit to the Monte-Carlo samples used 
to numerically evolve the stochastic coefficients. Specifically, the expectation-maximization (EM) algorithm 

          � � � for GMMs [79] is used to find maximum likelihood estimate for the GMM parameters �� ,� , �� ,� and Σ� ,� , 
while the selection of the number of GMM components (�GMM) is determined by the Bayesian Information 
Criterion (BIC) [80] by successively fitting GMMs of varying complexity (e.g. GMM = 1, 2, 3, ...) until a 
minimum of the BIC is obtained. 
Using the Gaussian observation model (Eq. 3), the GMM for the prior stochastic coefficients is updated 

by Bayesian update, using conjugacy [44]. The resulting GMM of the posterior stochastic coefficients is, 

�∑ GMM

�� � (� �) ≈ �� 
� ,� × �    (� �; ��

� ,� , Σ
�
� ,� ) , ∀� � ∈ R�� , (B.2) 

�=1 

where, 

��  � � × � ,�  (˜ � 
� �; ˜ � � ,� , �̃Σ �̃ � 

� ,� + �)
 ��

� ,� = ∑ , ∀� ∈ {1, ..., �GMM} ,�GMM � � × � � � 
�=1 � ,� (�̃; �̃ � , �̃Σ �̃ � 

� ,� � ,� + �)

�∑ GMM (B.3) 
�� 

� ,� = �̂� 
� ,� −  ��

� ,� × �̂� 
� ,� , ∀� ∈ {1, ..., �GMM} , 

�=1 

 Σ� = (� − �̃ ˜ � 
� ,� � �)Σ  ∀� ∈ {1,  �GMM}� ,� , ...,  ,

with the following definitions, 

�̃ = �Φ̃ , 

Φ� �̃ = � − � ̄  , 
�  � ˜

   � (B.4)
�̂� ,� = � − ˜ ∀� ,� + �� (�̃   ���  ,� ) , � ∈ {1, ..., �GMM} ,

 ˜  �  ˜ � ˜ �  ˜ � �
� = Σ � (�Σ � + �)−1 

� ≡ Φ̃ 
� ,� � ,� �� , ∀� ∈ {1, ..., �GMM} .

The posterior GMM state space distribution is obtained from Eq. (B.2) by updating the state vector mean, 

�∑ GMM

Φ̄ � Φ̄ � �� = + Φ̃ × �̂ � 
� ,� � ,� . (B.5) 

�=1 

In the GMM-DO update step, no matrices of size larger than ���� × � ≪ (����)
2 are manipulated. The 

GMM-DO filter is thus computationally feasible for high-dimensional multivariate PDE systems (Eq. A.1). 
At last, new Monte-Carlo samples are drawn from the posterior GMM (Eq. B.2) and dynamically evolved 

using the DO evolution Eqs. (A.5) until new observations come in and the filtering process is repeated. 
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Appendix C. State Augmentation 

To simultaneously estimate the uncertain parameters and states, we employ state augmentation [50]. 
We start by decomposing the stochastic regular parameters (�(�) ∈ R�� ), special parameters (�(�) ∈ R�� 

and �(�) ∈ R�� ), and expansion coefficients (�(�) ∈ R�� ) into their means and uncertain parts, 

  � �̄ + � �( ) = D (�) , 

�(�) = �̄  + � D (�) , 
(C.1) 

 ¯ � + D� �(�) = (�) , 
 �(�) = �̄  + D�(�) . 

The augmented state vector can be written as, 

�(�) ⎢⎢ �(�) ⎥⎥
Φ (�; �) = ⎢⎢ �(�) ⎥⎥ ∈ R�� �� +�� +��+�� +�� 
aug . (C.2)⎣ �(�) ⎦ 

Φ(�; �) 

⎡ ⎤ 

Now, let us write the DO decomposition for this new augmented system. We define a new coefficient matrix 
in which each parameter uncertainty amounts to an additional scalar stochastic coefficient, 

��  ; �) =  D�  (� (�)|D�(�)|D�(�)|D�(�)|� (�; �) ∈ R��+�� +��+�� +�� , (C.3) 
[ ] 

a new modes matrix with parameters having unit modes, [ ] 
Φ � 0˜ (�) = ∈ R(�� �� +�� +��+�� +�� )×(��+�� +��+�� +�� )
aug , (C.4)

0 Φ̃(�) 

and a new augmented mean vector, ⎡  �̄⎢⎢ �̄ ⎥⎥
Φ̄ (�) = ⎢⎢ �̄ ⎥⎥ ∈ R�� �� +�� +�� +�� +�� 
aug . (C.5) ⎣ �̄ ⎦ 

Φ̄(�) 

⎤ 

Thus, the DO decomposition of the augmented state is given by, 

��+�� +�� 
+�∑ � +�� 

Φaug(�; �) = Φ̄ 
aug(�) + Φ̃ 

aug,�(�)���(�; �) (C.6) 
�=1 

= Φ̄ 
aug(�) + Φ̃ 

aug(�)�� (�; �) . 

We can also define the augmented observation model as, [ ] 
� = 0 � Φaug + � , � ∼ � (0, �) 

(C.7) 
= �augΦaug + � , 

where � is the original observation matrix, and � �
 ∈ R�� ×( � �� +�� +��+�� +�� ) 

aug the augmented obser-
vation matrix, while Φaug is the augmented state ensemble. 
We can consider the above augmented state vector as forecast for time ��, and employ the GMM-DO 

filter (Appendix B) to obtain joint posterior distributions of all parameters and state variables. The GMM 
fit is completed jointly for the (normalized) parameter realizations and DO stochastic coefficients realizations 
of the discrete state variables. If the observations, commonly of state variables, are informative about some 
parameter values, the pdf of these parameters will be updated by the Bayesian update, jointly with the pdf 
of the DO stochastic coefficients of the discrete state variables. 
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Appendix D. Notations 

We define the notation used throughout the paper in Table D.2, without repeating definitions already 
given in Table 1. 

Table D.2: Notation Compendium 
General 

� ∈ R� Spatial coordinate vector 
� ∈ R Temporal coordinate 
� ∈ R Total simulation time 
� Simulation domain 
�� Simulation domain boundary 
� Realization index 
Ω Measurable sample space 
�� ∈ N Size of the discretized domain 
� ∈ R�� or R2 General state vector or velocity feld 
�� ∈ R�� or R2 Initial condition of � 
�� ∈ N Number of state variables 
�� (�) ∈ N Number of state variables in the ��ℎ candidate model of diferent 

complexity 
{�� , ..., �� }1 �� (�)

∈ R�� (�) State variables for the ��ℎ candidate model of diferent complex-
ity 

� ∈ R�� �� Discretized state vector of � 
� Boundary values 
ℳ Candidate model 
�� ∈ N Number of candidate models 
� ∈ R�� Uncertain regular parameters 
�� ∈ N Number of uncertain regular parameters 
� ∈ R�� Biological tracer felds 
�� ∈ R�� Initial condition of � 
�� ∈ N Number of biological tracers 
� ∈ R2 Pressure feld 
� and � ∈ R Horizontal and vertical velocity 
� and � ∈ R Horizontal and vertical direction 
�, �, �, and � ∈ N Miscellaneous index 

Model learning methodology 
� ∈ R�� Special stochastic parameters for combining candidate models 

with diferent functional forms 
�� ∈ N Number of special stochastic parameters �� ’s 
� ∈ R�� Special stochastic parameters for combining candidate models 

of diferent complexities 
�� ∈ N Number of special stochastic parameters �� ’s 
ℋ Range of values taken by the state variable 
�� Interval with non-zero measure 
�� N Number of intervals 
� ∈ R�� Stochastic expansion coefcient 
�� ∈ N Number of stochastic expansion coefcient �� ’s 
� ∈ N Index for uncertain regular parameters, special stochastic pa-

rameters, and stochastic expansion coefcients 
DO evolution equations 

�� ∈ N Number of DO modes 
�� ∈ N Number of Monte-Carlo samples 
�̄ ∈ R�� Biological tracer DO mean 
Φ̄ ∈ R�� �� Discretized biological tracer DO mean �̄ 
�̃� ∈ R�� ��ℎ biological tracer DO mode 
Φ̃� ∈ R�� �� ×�� Discretized biological tracer DO modes matrix 
�� ∈ R�� ��ℎ DO stochastic coefcient 
� ∈ R�� ×�� DO stochastic coefcient matrix 
�̄, �̄, �̄, and �̄ R�� ∈ R�� , , 

resp. 
R�� R�� , and Mean vectors of uncertain parameters 
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D� D� D� , , , and 
D� 

R�� R�� R�� ∈ R�� , , , and 
resp. 

Mean removed (deviation) part of uncertain parameters 

���,∙ ∈ R Weight of diferent state variables in inner-product computation 
GMM-DO flter 

� ∈ R�� Observation vector 
� ∈ R�� Observation vector realization 
�� ∈ N Number of observations 
� ∈ R�� ×�� �� or R�� ×�� �� Linear observation matrix 
� ∈ R�� Measurement noise vector 
� ∈ R�� ×�� Covariance matrix of measurement noise 
�GMM ∈ N Number of Gaussian mixture model (GMM) components 
�∙ 
∙,� ∈ [0, 1] ��ℎ GMM component weight 

�∙ 
∙,� ∈ R�� ��ℎ GMM component mean vector 
Σ∙ 
∙,� ∈ R��×�� ��ℎ GMM component covariance matrix 

�� ∈ R�� �� ×�� or R�� �� ×�� ��ℎ Kalman gain matrix 
�∙(∙) ∈ R Probability distribution value 
�̃ ∈ R�� Transformed observation vector realization 
�̃ ∈ R�� ×�� Transformed linear observation matrix 
�̃� ∈ R��×�� Transformed ��ℎ Kalman gain matrix 
�̂∙ 
∙,� ∈ R�� Intermediate ��ℎ GMM component mean vector 

Reduced dimension state augmentation 

Φaug 

�� �� +�� +�� 
+�� +�� ∈ R Augmented discretized state vector 

Φ̄aug 

�� �� +�� +�� 
+�� +�� ∈ R Augmented discretized DO mean vector 

Φ̃aug 

�� �� +�� +�� 
+�� +�� ∈ R Augmented discretized DO modes matrix 

�� 
��+�� +�� 
+�� +�� ∈ R Augmented DO stochastic coefcient matrix 

�aug 

�� × 
(�� �� +�� +��+�� +�� )∈ R Augmented linear observation matrix 

� 
(�� +��+�� +�� )× 
(�� +��+�� +�� )∈ R Identity matrix 

0 Matrix of zeroes of appropriate size 
Operators, functions, and indicators 

ℒ[∙] Functional form of known dynamics 
ℒ̂[∙] Unknown dynamics belonging to a set of candidate functional 

forms 
{ ℒ̂1[∙], ..., ℒ̂�� [∙]} Set of candidate functional forms 
ℒ̃[∙] Functional form of completely unknown dynamics 
{ℒ� [∙], ..., ℒ� [∙]}1 �� (�)

Right-hand-sides of ��ℎ candidate model of diferent complexity 

� (∙, ∙) Gaussian distribution 
Ψ� (∙) ��ℎ Linear function 

�� {��1 
(∙), ..., �� (∙)} Biological reaction terms 

�̂�(∙) Unknown biological reaction terms belonging to a set of candi-
date functional forms 

�̃�(∙) Completely unknown biological reaction terms 
∇.(∙) Gradient operator 
∇2(∙) Difusion operator 
⟨∙, ∙⟩ ��ℎ Spatial inner-product 
E[∙] Expectation 
�∙,∙ Cross-covariance 
ℬ[∙] Boundary condition operator 
�� DO Subspace 
(∙)� Prior 
(∙)� Posterior 

References 

[1] C. Lalli, T. R. Parsons, Biological Oceanography: An Introduction, Elsevier Butterworth-Heinemann, 1997. 

35 



[2] W. Fennel, T. Neumann, Introduction to the Modelling of Marine Ecosystems:(with MATLAB programs on accompanying 
CD-ROM), Vol. 72 of Oceanography, Elsevier, 2014. 

[3] P. J. S. Franks, NPZ models of plankton dynamics: their construction, coupling to physics, and application, Journal of 
Oceanography 58 (2) (2002) 379–387. 

[4] B. A. Ward, M. A. M. Friedrichs, T. R. Anderson, A. Oschlies, Parameter optimisation techniques and the problem of 
underdetermination in marine biogeochemical models, Journal of Marine Systems 81 (1) (2010) 34–43. 

[5] K. L. Denman, Modelling planktonic ecosystems: parameterizing complexity, Progress in Oceanography 57 (3-4) (2003) 
429–452. 

[6] P. J. S. Franks, J. S. Wroblewski, G. R. Flierl, Behavior of a simple plankton model with food-level acclimation by 
herbivores, Marine Biology 91 (1) (1986) 121–129. 

[7] G. Flierl, D. J. McGillicuddy, Mesoscale and submesoscale physical-biological interactions, The sea 12 (2002) 113–185. 
[8] C. S. Davis, J. H. Steele, Biological/physical modeling of upper ocean processes, Tech. rep., Woods Hole Oc. Inst. (1994). 
[9] M. J. R. Fasham, H. W. Ducklow, S. M. McKelvie, A nitrogen-based model of plankton dynamics in the oceanic mixed 

layer, Journal of Marine Research 48 (3) (1990) 591–639. 
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